IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v144y2019icp103-117.html
   My bibliography  Save this article

Smart solutions shape for sustainable low-carbon future: A review on smart cities and industrial parks in China

Author

Listed:
  • Wang, Yuanping
  • Ren, Hong
  • Dong, Liang
  • Park, Hung-Suck
  • Zhang, Yuepeng
  • Xu, Yanwei

Abstract

To promote sustainable urban development and green industrial process are critical solutions for sustainable and low-carbon society transition in China, considering the significant environmental impacts derived from the industrialization and surging urbanization. Under this background, China adopts top-down programs on smart cities and smart industrial parks to forward the above efforts. While practices and lessons from these programs will be valuable to enlighten other regions and practitioners, to date, rather few studies have paid attentions to this issue. Particularly, the emerging smart technologies strongly support the practice, via offering smart solutions like better renewable energy projection, low-carbon life styles transformation, as well as energy planning and management. However, there has been a lack of discussing their future role in-depth. With this circumstance, this paper conducts an integrated and in-depth review on China's promotion on smart cities and smart industrial parks. In detail, the national pilots, key technical innovations, incentives and policies framework, as well as spatial features were discussed in-depth. Particularly, we further explored how the smart solutions can contribute to better decision making on low-carbon urban and industrial system planning. Finally, we highlighted policy recommendations targeting on future smart cities and industrial parks promotion, focusing on the perspectives of technological and social system innovations, innovative decision support tools, and smart management framework. Our results expect to offer critical enlightenments for policy makers to address future concerns on smart cities and industrial parks promotion and management.

Suggested Citation

  • Wang, Yuanping & Ren, Hong & Dong, Liang & Park, Hung-Suck & Zhang, Yuepeng & Xu, Yanwei, 2019. "Smart solutions shape for sustainable low-carbon future: A review on smart cities and industrial parks in China," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 103-117.
  • Handle: RePEc:eee:tefoso:v:144:y:2019:i:c:p:103-117
    DOI: 10.1016/j.techfore.2019.04.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162518312174
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2019.04.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Weber, K. Matthias & Heller-Schuh, Barbara & Godoe, Helge & Roeste, Rannveig, 2014. "ICT-enabled system innovations in public services: Experiences from intelligent transport systems," Telecommunications Policy, Elsevier, vol. 38(5), pages 539-557.
    2. Sigrid Reiter & Anne‐Françoise Marique, 2012. "Toward Low Energy Cities," Journal of Industrial Ecology, Yale University, vol. 16(6), pages 829-838, December.
    3. Zhu Liu & Dabo Guan & Wei Wei & Steven J. Davis & Philippe Ciais & Jin Bai & Shushi Peng & Qiang Zhang & Klaus Hubacek & Gregg Marland & Robert J. Andres & Douglas Crawford-Brown & Jintai Lin & Hongya, 2015. "Reduced carbon emission estimates from fossil fuel combustion and cement production in China," Nature, Nature, vol. 524(7565), pages 335-338, August.
    4. Dong, Liang & Gu, Fumei & Fujita, Tsuyoshi & Hayashi, Yoshitsugu & Gao, Jie, 2014. "Uncovering opportunity of low-carbon city promotion with industrial system innovation: Case study on industrial symbiosis projects in China," Energy Policy, Elsevier, vol. 65(C), pages 388-397.
    5. Lazaroiu, George Cristian & Roscia, Mariacristina, 2012. "Definition methodology for the smart cities model," Energy, Elsevier, vol. 47(1), pages 326-332.
    6. Marsal-Llacuna, Maria-Lluïsa & Colomer-Llinàs, Joan & Meléndez-Frigola, Joaquim, 2015. "Lessons in urban monitoring taken from sustainable and livable cities to better address the Smart Cities initiative," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 611-622.
    7. Niemi, R. & Mikkola, J. & Lund, P.D., 2012. "Urban energy systems with smart multi-carrier energy networks and renewable energy generation," Renewable Energy, Elsevier, vol. 48(C), pages 524-536.
    8. Salom, Jaume & Marszal, Anna Joanna & Widén, Joakim & Candanedo, José & Lindberg, Karen Byskov, 2014. "Analysis of load match and grid interaction indicators in net zero energy buildings with simulated and monitored data," Applied Energy, Elsevier, vol. 136(C), pages 119-131.
    9. Dong, Liang & Liang, Hanwei & Zhang, Liguo & Liu, Zhaowen & Gao, Zhiqiu & Hu, Mingming, 2017. "Highlighting regional eco-industrial development: Life cycle benefits of an urban industrial symbiosis and implications in China," Ecological Modelling, Elsevier, vol. 361(C), pages 164-176.
    10. Mohareb, Eugene A. & Kennedy, Christopher A., 2014. "Scenarios of technology adoption towards low-carbon cities," Energy Policy, Elsevier, vol. 66(C), pages 685-693.
    11. Ben Letaifa, Soumaya, 2015. "How to strategize smart cities: Revealing the SMART model," Journal of Business Research, Elsevier, vol. 68(7), pages 1414-1419.
    12. Calvillo, C.F. & Sánchez-Miralles, A. & Villar, J., 2016. "Energy management and planning in smart cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 273-287.
    13. Qi, Tianyu & Zhang, Xiliang & Karplus, Valerie J., 2014. "The energy and CO2 emissions impact of renewable energy development in China," Energy Policy, Elsevier, vol. 68(C), pages 60-69.
    14. Gabriel B. Grant & Thomas P. Seager & Guillaume Massard & Loring Nies, 2010. "Information and Communication Technology for Industrial Symbiosis," Journal of Industrial Ecology, Yale University, vol. 14(5), pages 740-753, October.
    15. Kainuma, Mikiko & Shukla, Priyadarshi R. & Jiang, Kejun, 2012. "Framing and modeling of a low carbon society: An overview," Energy Economics, Elsevier, vol. 34(S3), pages 316-324.
    16. Yamagata, Yoshiki & Seya, Hajime, 2013. "Simulating a future smart city: An integrated land use-energy model," Applied Energy, Elsevier, vol. 112(C), pages 1466-1474.
    17. Dong, Liang & Fujita, Tsuyoshi & Zhang, Hui & Dai, Ming & Fujii, Minoru & Ohnishi, Satoshi & Geng, Yong & Liu, Zhu, 2013. "Promoting low-carbon city through industrial symbiosis: A case in China by applying HPIMO model," Energy Policy, Elsevier, vol. 61(C), pages 864-873.
    18. Sidik, Muhammad Abu Bakar & Shahroom, Hamizah Binti & Salam, Zainal & Buntat, Zokafle & Nawawi, Zainuddin & Ahmad, Hussein & Jambak, Muhammad ’Irfan & Arief, Yanuar Zulardiansyah, 2015. "Lightning monitoring system for sustainable energy supply: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 710-725.
    19. Mendoza, Joan-Manuel F. & Sanyé-Mengual, Esther & Angrill, Sara & García-Lozano, Raúl & Feijoo, Gumersindo & Josa, Alejandro & Gabarrell, Xavier & Rieradevall, Joan, 2015. "Development of urban solar infrastructure to support low-carbon mobility," Energy Policy, Elsevier, vol. 85(C), pages 102-114.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nishimwe, Antoinette Marie Reine & Reiter, Sigrid, 2021. "Building heat consumption and heat demand assessment, characterization, and mapping on a regional scale: A case study of the Walloon building stock in Belgium," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Luca Fraccascia & Vahid Yazdanpanah & Guido Capelleveen & Devrim Murat Yazan, 2021. "Energy-based industrial symbiosis: a literature review for circular energy transition," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 4791-4825, April.
    3. Jiajia Huan & Ling Han, 2022. "Potential Contribution to Carbon Neutrality Strategy from Industrial Symbiosis: Evidence from a Local Coal-Aluminum-Electricity-Steel Industrial System," Sustainability, MDPI, vol. 14(5), pages 1-14, February.
    4. Efrain Boom-Cárcamo & Rita Peñabaena-Niebles, 2022. "Analysis of the Development of Industrial Symbiosis in Emerging and Frontier Market Countries: Barriers and Drivers," Sustainability, MDPI, vol. 14(7), pages 1-32, April.
    5. Parul Gupta & Sumedha Chauhan & M. P. Jaiswal, 2019. "Classification of Smart City Research - a Descriptive Literature Review and Future Research Agenda," Information Systems Frontiers, Springer, vol. 21(3), pages 661-685, June.
    6. Hyeong-Woo Kim & Liang Dong & Seok Jung & Hung-Suck Park, 2018. "The Role of the Eco-Industrial Park (EIP) at the National Economy: An Input-Output Analysis on Korea," Sustainability, MDPI, vol. 10(12), pages 1-19, December.
    7. Wang, Mengmeng & Zhou, Tao & Wang, Di, 2020. "Tracking the evolution processes of smart cities in China by assessing performance and efficiency," Technology in Society, Elsevier, vol. 63(C).
    8. Sun, Lu & Li, Hong & Dong, Liang & Fang, Kai & Ren, Jingzheng & Geng, Yong & Fujii, Minoru & Zhang, Wei & Zhang, Ning & Liu, Zhe, 2017. "Eco-benefits assessment on urban industrial symbiosis based on material flows analysis and emergy evaluation approach: A case of Liuzhou city, China," Resources, Conservation & Recycling, Elsevier, vol. 119(C), pages 78-88.
    9. Margarida Rodrigues & Mário Franco, 2018. "Measuring the Performance in Creative Cities: Proposal of a Multidimensional Model," Sustainability, MDPI, vol. 10(11), pages 1-21, November.
    10. Dong, Liang & Liang, Hanwei & Zhang, Liguo & Liu, Zhaowen & Gao, Zhiqiu & Hu, Mingming, 2017. "Highlighting regional eco-industrial development: Life cycle benefits of an urban industrial symbiosis and implications in China," Ecological Modelling, Elsevier, vol. 361(C), pages 164-176.
    11. Koutra, Sesil & Becue, Vincent & Ioakimidis, Christos S., 2019. "Searching for the ‘smart’ definition through its spatial approach," Energy, Elsevier, vol. 169(C), pages 924-936.
    12. Liu, Zhe & Adams, Michelle & Cote, Raymond P. & Geng, Yong & Chen, Qinghua & Liu, Weili & Sun, Lu & Yu, Xiaoman, 2017. "Comprehensive development of industrial symbiosis for the response of greenhouse gases emission mitigation: Challenges and opportunities in China," Energy Policy, Elsevier, vol. 102(C), pages 88-95.
    13. Haarstad, Håvard & Wathne, Marikken W., 2019. "Are smart city projects catalyzing urban energy sustainability?," Energy Policy, Elsevier, vol. 129(C), pages 918-925.
    14. Angela Neves & Radu Godina & Susana G. Azevedo & Carina Pimentel & João C.O. Matias, 2019. "The Potential of Industrial Symbiosis: Case Analysis and Main Drivers and Barriers to Its Implementation," Sustainability, MDPI, vol. 11(24), pages 1-68, December.
    15. Schiavone, Francesco & Paolone, Francesco & Mancini, Daniela, 2019. "Business model innovation for urban smartization," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 210-219.
    16. Yuli Bian & Liang Dong & Zhaowen Liu & Lezhu Zhang, 2020. "A Sectoral Eco-Efficiency Analysis on Urban-Industrial Symbiosis," Sustainability, MDPI, vol. 12(9), pages 1-19, May.
    17. Chen, Qianli & Cai, Bofeng & Dhakal, Shobhakar & Pei, Sha & Liu, Chunlan & Shi, Xiaoping & Hu, Fangfang, 2017. "CO2 emission data for Chinese cities," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 198-208.
    18. Zheng, Zhuang & Shafique, Muhammad & Luo, Xiaowei & Wang, Shengwei, 2024. "A systematic review towards integrative energy management of smart grids and urban energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    19. Dorota Walentek, 2021. "Datafication Process in the Concept of Smart Cities," Energies, MDPI, vol. 14(16), pages 1-17, August.
    20. Clement, Dr. Jessica & Crutzen, Prof. Nathalie, 2021. "How Local Policy Priorities Set the Smart City Agenda," Technological Forecasting and Social Change, Elsevier, vol. 171(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:144:y:2019:i:c:p:103-117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.