IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v278y2023ics036054422301215x.html
   My bibliography  Save this article

Relationship between the main functional groups and complex permittivity in pre-oxidised lignite at terahertz frequencies based on grey correlation analysis

Author

Listed:
  • Zhu, Hongqing
  • Liao, Qi
  • Qu, Baolin
  • Hu, Lintao
  • Wang, Haoran
  • Gao, Rongxiang
  • Zhang, Yilong

Abstract

The complex permittivity of lignite at different pre-oxidation temperatures is a key criterion for its application in the identification of oxidised lignite at terahertz (THz) frequencies. This study investigated the micro-characteristics and THz frequency permittivity of lignite heated at different pre-oxidation temperatures. Thus, Fourier transform infrared spectroscopy, scanning electron microscopy, and THz time-domain spectroscopy were employed. The relationship of the main functional groups and complex permittivity of lignite with the pre-oxidation temperature was determined by grey correlation analysis. The results showed that, with an increase in the released gases, the pores developed in the cracks generated several small particles. The active and maximum mass temperatures were the critical temperatures for the relative intensities of the main functional groups. From the active temperature to the maximum mass temperature, the main functional groups affected the complex permittivity owing to the dipole moment and relative molecular mass. Moreover, wave scattering caused by the microstructure of lignite was the main reason for the imaginary permittivity changing at certain pre-oxidation temperatures. The imaginary permittivity and dielectric loss tangent decreased at the active temperature, then increased and maintained a maximum at the intermediate temperature between the maximum mass and ignition temperatures until it finally decreased.

Suggested Citation

  • Zhu, Hongqing & Liao, Qi & Qu, Baolin & Hu, Lintao & Wang, Haoran & Gao, Rongxiang & Zhang, Yilong, 2023. "Relationship between the main functional groups and complex permittivity in pre-oxidised lignite at terahertz frequencies based on grey correlation analysis," Energy, Elsevier, vol. 278(C).
  • Handle: RePEc:eee:energy:v:278:y:2023:i:c:s036054422301215x
    DOI: 10.1016/j.energy.2023.127821
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422301215X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127821?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Lu-Tao & Liu, Zhao-Ting & Cheng, Lei, 2021. "How will China's coal industry develop in the future? A quantitative analysis with policy implications," Energy, Elsevier, vol. 235(C).
    2. Zhan, Honglei & Zhao, Kun & Xiao, Lizhi, 2015. "Spectral characterization of the key parameters and elements in coal using terahertz spectroscopy," Energy, Elsevier, vol. 93(P1), pages 1140-1145.
    3. Lü, Hui-Fei & Deng, Jun & Li, Da-Jiang & Xu, Fan & Xiao, Yang & Shu, Chi-Min, 2021. "Effect of oxidation temperature and oxygen concentration on macro characteristics of pre-oxidised coal spontaneous combustion process," Energy, Elsevier, vol. 227(C).
    4. Valerie J. Karplus, 2019. "Clearing the air in China," Nature Energy, Nature, vol. 4(11), pages 904-905, November.
    5. Ren, Yangguang & Xu, Zhiqiang & Gu, Suqian, 2022. "Physicochemical properties and slurry ability changes of lignite after microwave upgrade with the assist of lignite semi-coke," Energy, Elsevier, vol. 252(C).
    6. Gu, Suqian & Xu, Zhiqiang & Ren, Yangguang & Tu, Yanan & Sun, Meijie & Liu, Xiangyang, 2021. "An approach for upgrading lignite to improve slurryability: Blending with direct coal liquefaction residue under microwave-assisted pyrolysis," Energy, Elsevier, vol. 222(C).
    7. Diluiso, Francesca & Walk, Paula & Manych, Niccolò & Cerutti, Nicola & Chipiga, Vladislav & Workman, Annabelle & Ayas, Ceren & Cui, Ryna Yiyun & Cui, Diyang & Song, Kaihui & Banisch, Lucy A. & Moretti, 2021. "Coal transitions—part 1: a systematic map and review of case study learnings from regional, national, and local coal phase-out experiences," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 16(11).
    8. Xu, Ying & Wang, Jiming & Zhang, Guojie & Zhang, Xiaodi & Qin, Xiaowei & Zhang, Yongfa, 2022. "Evaluation of hydrothermal treatment on physicochemical properties and re-adsorption behaviors of lignite," Energy, Elsevier, vol. 244(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qu, Baolin & Wang, Jingxin & Zhu, Hongqing & Hu, Lintao & Liao, Qi, 2024. "Experimental study on evolution and mechanism for dielectric response of different rank coals in terahertz band," Energy, Elsevier, vol. 288(C).
    2. Zhang, Yanni & Hou, Yunchao & Yang, Dan & Deng, Jun, 2024. "Transformation and migration of key elements during the thermal reaction of coal spontaneous combustion," Energy, Elsevier, vol. 290(C).
    3. Qu, Baolin & Zhu, Hongqing & Wang, Jingxin & Li, Binrui & Xie, Linhao & Liao, Qi & Hu, Lintao, 2024. "Dynamic evolution of terahertz permittivity of lignite during oxidation: Microstructural insights," Applied Energy, Elsevier, vol. 363(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Wei & Wang, Deming & Xin, Haihui & Wang, Chenguang & Xu, Zuoming & Hou, Zhenhai & Qi, Zhangfan, 2024. "Reignition characteristics of lignite affected by pre-oxidation and liquid nitrogen cold soaking," Energy, Elsevier, vol. 303(C).
    2. Ren, Yangguang & Lv, Ziqi & Xu, Zhiqiang & Wang, Qun & Wang, Zhe, 2023. "Slurry-ability mathematical modeling of microwave-modified lignite: A comparative analysis of multivariate non-linear regression model and XGBoost algorithm model," Energy, Elsevier, vol. 281(C).
    3. Qu, Baolin & Zhu, Hongqing & Wang, Jingxin & Li, Binrui & Xie, Linhao & Liao, Qi & Hu, Lintao, 2024. "Dynamic evolution of terahertz permittivity of lignite during oxidation: Microstructural insights," Applied Energy, Elsevier, vol. 363(C).
    4. Qu, Baolin & Wang, Jingxin & Zhu, Hongqing & Hu, Lintao & Liao, Qi, 2024. "Experimental study on evolution and mechanism for dielectric response of different rank coals in terahertz band," Energy, Elsevier, vol. 288(C).
    5. Qin, Tao & Lu, Qiuxiang & Xiang, Hao & Luo, Xiulin & Shenfu, Yuan, 2023. "Ca promoted Ni–Co bimetallic catalyzed coal pyrolysis and char steam gasification," Energy, Elsevier, vol. 282(C).
    6. Xu, Jiuping & Shu, Kejing & Wang, Fengjuan & Yang, Guocan, 2024. "Bi-level multi-objective distribution strategy integrating the permit trading scheme towards coal production capacity layout optimization: Case study from China," Resources Policy, Elsevier, vol. 91(C).
    7. Liu, Wei & Chu, Xiangyu & Xu, Hao & Chen, Wei & Ma, Liwei & Qin, Yueping & Wei, Jun, 2022. "Oxidation reaction constants for coal spontaneous combustion under inert gas environments: An experimental investigation," Energy, Elsevier, vol. 247(C).
    8. Shi, Quanlin & Jiang, Wenjie & Qin, Botao & Hao, Mingyue & He, Zhenyu, 2023. "Effects of oxidation temperature on microstructure and spontaneous combustion characteristics of coal: A case study of Shendong long-flame coal," Energy, Elsevier, vol. 284(C).
    9. Lola Nacke & Vadim Vinichenko & Aleh Cherp & Avi Jakhmola & Jessica Jewell, 2024. "Compensating affected parties necessary for rapid coal phase-out but expensive if extended to major emitters," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    10. Pan, Rongkun & Hu, Daimin & Han, Xuefeng & Chao, Jiangkun & Jia, Hailin, 2023. "Analysis of the wetting and exothermic properties of preoxidized coal and the microscopic mechanism," Energy, Elsevier, vol. 271(C).
    11. Zhang, Xun & Zou, Jiahui & Lu, Bing & Huang, Ge & Yu, Chen & Liang, Huimin, 2023. "Experimental study on effect of mudstone on spontaneous combustion of coal," Energy, Elsevier, vol. 285(C).
    12. Xu, Yizhen & Qin, Botao & Shi, Quanlin & Hao, Mingyue & Shao, Xu & Jiang, Zhe & Ma, Zujie, 2023. "Study on the preparation and properties of colloidal gas foam concrete to prevent spontaneous combustion of coal," Energy, Elsevier, vol. 283(C).
    13. Wang, Kai & Hu, Lihong & Deng, Jun & Zhang, Yanni, 2023. "Multiscale thermal behavioral characterization of spontaneous combustion of pre-oxidized coal with different air exposure time," Energy, Elsevier, vol. 262(PA).
    14. Müller-Hansen, Finn & Lee, Yuan Ting & Callaghan, Max & Jankin, Slava & Minx, Jan C., 2022. "The German coal debate on Twitter: Reactions to a corporate policy process," Energy Policy, Elsevier, vol. 169(C).
    15. Jiang, Xu & Xu, Jun & He, Qichen & Wang, Cong & Jiang, Long & Xu, Kai & Wang, Yi & Su, Sheng & Hu, Song & Du, Zhenyi & Xiang, Jun, 2023. "A study of the relationships between coal heterogeneous chemical structure and pyrolysis behaviours: Mechanism and predicting model," Energy, Elsevier, vol. 282(C).
    16. Zhan, Honglei & Qin, Fankai & Chen, Sitong & Chen, Ru & Meng, Zhaohui & Miao, Xinyang & Zhao, Kun, 2022. "Two-step pyrolysis degradation mechanism of oil shale through comprehensive analysis of pyrolysis semi-cokes and pyrolytic gases," Energy, Elsevier, vol. 241(C).
    17. Sasse, Jan-Philipp & Trutnevyte, Evelina, 2023. "Cost-effective options and regional interdependencies of reaching a low-carbon European electricity system in 2035," Energy, Elsevier, vol. 282(C).
    18. Yao, Qiuxiang & Wang, Linyang & Ma, Mingming & Ma, Li & He, Lei & Ma, Duo & Sun, Ming, 2024. "A quantitative investigation on pyrolysis behaviors of metal ion-exchanged coal macerals by interpretable machine learning algorithms," Energy, Elsevier, vol. 300(C).
    19. Deng, Jun & Yang, Nannan & Wang, Caiping & Yin, Deng & Xiaoyong, Zhao & He, Yongjun, 2023. "Study on staged heat transfer law of coal spontaneous combustion in deep mines," Energy, Elsevier, vol. 285(C).
    20. Hua Wang & Wei Zhang & Haihui Xin & Deming Wang & Cuicui Di & Lu Liu, 2021. "Characteristics of Pyrolysis and Low Oxygen Combustion of Long Flame Coal and Reburning of Residues," Energies, MDPI, vol. 14(10), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:278:y:2023:i:c:s036054422301215x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.