IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v268y2020ics0306261920304827.html
   My bibliography  Save this article

Upgrading of reed pyrolysis oil by using its biochar-based catalytic esterification and the influence of reed sources

Author

Listed:
  • Yue, Xia
  • Chen, Dezhen
  • Luo, Jia
  • Xin, Qianfan
  • Huang, Zhen

Abstract

Biomass pyrolysis oil has a high energy density; however, it cannot be easily utilized owing to its high corrosivity and viscosity. In this study, pyrolysis oil obtained from reed, a type of waste biomass, was upgraded through catalytic esterification to improve the calorific value and reduce viscosity. An inexpensive catalyst, i.e., reed biochar-based solid acid catalyst (RBSAC), was prepared by sulfonating reed biochar, a co-product of pyrolysis oil, to catalyze its esterification process. Seawater reed and freshwater reed were compared to produce RBSACs of better catalytic effects. The RBSACs were then compared with concentrated sulfuric acid and commercial catalysts, 732 and NKC-9, to evaluate their catalytic effects. The results indicate that all the RBSACs can upgrade the pyrolysis oil by replacing its organic acid with ester, thereby increasing its calorific value and pH and significantly reducing its viscosity. The RBSACs prepared with freshwater reed demonstrated better catalytic effects than those prepared with seawater reed. The one prepared with freshwater reed biochar pyrolyzed at 700 °C (700FWC) demonstrated the best upgrading effect; its corresponding upgraded oil had an ester content of 21.85 area% and calorific value of 21.64 MJ/kg. Furthermore, it was found that the characteristics of reed biochar, i.e., large surface area, highly aromatic structure, rich electron-donating surface functional groups, and low inorganic salts content were conducive to obtain a more effective RBSAC. These findings indicate that biochar-based catalysts can be used as an inexpensive catalyst to upgrade biomass pyrolysis oils.

Suggested Citation

  • Yue, Xia & Chen, Dezhen & Luo, Jia & Xin, Qianfan & Huang, Zhen, 2020. "Upgrading of reed pyrolysis oil by using its biochar-based catalytic esterification and the influence of reed sources," Applied Energy, Elsevier, vol. 268(C).
  • Handle: RePEc:eee:appene:v:268:y:2020:i:c:s0306261920304827
    DOI: 10.1016/j.apenergy.2020.114970
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920304827
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114970?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Wei & Fang, Yang & Li, Kaixu & Chen, Zhiqun & Xia, Mingwei & Gong, Meng & Chen, Yingquan & Yang, Haiping & Tu, Xin & Chen, Hanping, 2020. "Bamboo wastes catalytic pyrolysis with N-doped biochar catalyst for phenols products," Applied Energy, Elsevier, vol. 260(C).
    2. Hervy, Maxime & Weiss-Hortala, Elsa & Pham Minh, Doan & Dib, Hadi & Villot, Audrey & Gérente, Claire & Berhanu, Sarah & Chesnaud, Anthony & Thorel, Alain & Le Coq, Laurence & Nzihou, Ange, 2019. "Reactivity and deactivation mechanisms of pyrolysis chars from bio-waste during catalytic cracking of tar," Applied Energy, Elsevier, vol. 237(C), pages 487-499.
    3. Lee, Jechan & Kim, Ki-Hyun & Kwon, Eilhann E., 2017. "Biochar as a Catalyst," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 70-79.
    4. Hu, Xun & Lievens, Caroline & Mourant, Daniel & Wang, Yi & Wu, Liping & Gunawan, Richard & Song, Yao & Li, Chun-Zhu, 2013. "Investigation of deactivation mechanisms of a solid acid catalyst during esterification of the bio-oils from mallee biomass," Applied Energy, Elsevier, vol. 111(C), pages 94-103.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdulyekeen, Kabir Abogunde & Umar, Ahmad Abulfathi & Patah, Muhamad Fazly Abdul & Daud, Wan Mohd Ashri Wan, 2021. "Torrefaction of biomass: Production of enhanced solid biofuel from municipal solid waste and other types of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. Du, Hong & Ma, Xiuyun & Jiang, Miao & Yan, Peifang & Zhang, Z.Conrad, 2021. "Autocatalytic co-upgrading of biochar and pyrolysis gas to syngas," Energy, Elsevier, vol. 221(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Haiping & Chen, Zhiqun & Chen, Wei & Chen, Yingquan & Wang, Xianhua & Chen, Hanping, 2020. "Role of porous structure and active O-containing groups of activated biochar catalyst during biomass catalytic pyrolysis," Energy, Elsevier, vol. 210(C).
    2. Chen, Cheng & Volpe, Roberto & Jiang, Xi, 2021. "A molecular investigation on lignin thermochemical conversion and carbonaceous organics deposition induced catalyst deactivation," Applied Energy, Elsevier, vol. 302(C).
    3. Korus, Agnieszka & Ravenni, Giulia & Loska, Krzysztof & Korus, Irena & Samson, Abby & Szlęk, Andrzej, 2021. "The importance of inherent inorganics and the surface area of wood char for its gasification reactivity and catalytic activity towards toluene conversion," Renewable Energy, Elsevier, vol. 173(C), pages 479-497.
    4. Du, Shilin & Shu, Rui & Guo, Feiqiang & Mao, Songbo & Bai, Jiaming & Qian, Lin & Xin, Chengyun, 2022. "Porous coal char-based catalyst from coal gangue and lignite with high metal contents in the catalytic cracking of biomass tar," Energy, Elsevier, vol. 249(C).
    5. Yang, Guang & Wang, Jianlong, 2018. "Various additives for improving dark fermentative hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 130-146.
    6. Liu, Zihan & Li, Pan & Chang, Chun & Wang, Xianhua & Song, Jiande & Fang, Shuqi & Pang, Shusheng, 2022. "Influence of metal chloride modified biochar on products characteristics from biomass catalytic pyrolysis," Energy, Elsevier, vol. 250(C).
    7. Liu, Zhongzhe & Singer, Simcha & Tong, Yiran & Kimbell, Lee & Anderson, Erik & Hughes, Matthew & Zitomer, Daniel & McNamara, Patrick, 2018. "Characteristics and applications of biochars derived from wastewater solids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 650-664.
    8. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    9. Bangun Adi Wijaya & Wahyu Hidayat & Melya Riniarti & Hendra Prasetia & Ainin Niswati & Udin Hasanudin & Irwan Sukri Banuwa & Sangdo Kim & Sihyun Lee & Jiho Yoo, 2022. "Meranti ( Shorea sp.) Biochar Application Method on the Growth of Sengon ( Falcataria moluccana ) as a Solution of Phosphorus Crisis," Energies, MDPI, vol. 15(6), pages 1-14, March.
    10. Fan, Xudong & Wu, Yujian & Sun, Yan & Tu, Ren & Ren, Zhipeng & Liang, Kaili & Jiang, Enchen & Ren, Yongzhi & Xu, Xiwei, 2022. "Functional groups anchoring-induced Ni/MoOx-Ov interface on rice husk char for hydrodeoxygenation of bio-guaiacol to BTX at ambient-pressure," Renewable Energy, Elsevier, vol. 200(C), pages 579-591.
    11. Hu, Mian & Laghari, Mahmood & Cui, Baihui & Xiao, Bo & Zhang, Beiping & Guo, Dabin, 2018. "Catalytic cracking of biomass tar over char supported nickel catalyst," Energy, Elsevier, vol. 145(C), pages 228-237.
    12. Buentello-Montoya, David & Zhang, Xiaolei & Li, Jun & Ranade, Vivek & Marques, Simão & Geron, Marco, 2020. "Performance of biochar as a catalyst for tar steam reforming: Effect of the porous structure," Applied Energy, Elsevier, vol. 259(C).
    13. Kwon, Dohee & Kim, Youngju & Choi, Dongho & Jung, Sungyup & Tsang, Yiu Fai & Kwon, Eilhann E., 2024. "Enhanced thermochemical valorization of coconut husk through carbon dioxide integration: A sustainable approach to agricultural residue utilization," Applied Energy, Elsevier, vol. 369(C).
    14. Liu, Shasha & Wu, Gang & Gao, Yi & Li, Bin & Feng, Yu & Zhou, Jianbin & Hu, Xun & Huang, Yong & Zhang, Shu & Zhang, Hong, 2021. "Understanding the catalytic upgrading of bio-oil from pine pyrolysis over CO2-activated biochar," Renewable Energy, Elsevier, vol. 174(C), pages 538-546.
    15. Lee, Jechan & Kim, Soosan & You, Siming & Park, Young-Kwon, 2023. "Bioenergy generation from thermochemical conversion of lignocellulosic biomass-based integrated renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    16. Buentello-Montoya, D.A. & Zhang, X. & Li, J., 2019. "The use of gasification solid products as catalysts for tar reforming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 399-412.
    17. Pang, Yunji & Wu, Yuting & Chen, Yisheng & Luo, Fuliang & Chen, Junjun, 2020. "Degradation effect of Ce/Al2O3 catalyst on pyrolysis volatility of pine," Renewable Energy, Elsevier, vol. 162(C), pages 134-143.
    18. Kim, Jung-Hun & Oh, Jeong-Ik & Tsang, Yiu Fai & Park, Young-Kwon & Lee, Jechan & Kwon, Eilhann E., 2020. "CO2-assisted catalytic pyrolysis of digestate with steel slag," Energy, Elsevier, vol. 191(C).
    19. Chen, Wei & Fang, Yang & Li, Kaixu & Chen, Zhiqun & Xia, Mingwei & Gong, Meng & Chen, Yingquan & Yang, Haiping & Tu, Xin & Chen, Hanping, 2020. "Bamboo wastes catalytic pyrolysis with N-doped biochar catalyst for phenols products," Applied Energy, Elsevier, vol. 260(C).
    20. Li, Jie & Chang, Guozhang & Song, Ke & Hao, Bolun & Wang, Cuiping & Zhang, Jian & Yue, Guangxi & Hu, Shugang, 2023. "Influence of coal bottom ash additives on catalytic reforming of biomass pyrolysis gaseous tar and biochar/steam gasification reactivity," Renewable Energy, Elsevier, vol. 203(C), pages 434-444.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:268:y:2020:i:c:s0306261920304827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.