IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v304y2024ics0360544224019741.html
   My bibliography  Save this article

Effect of double bypass conditions on the thermodynamic characteristics and internal flow mechanisms in a variable core cycle compression system

Author

Listed:
  • Luo, Qiaodan
  • Zhao, Shengfeng
  • Zhou, Shiji
  • Wang, Haoran
  • Yao, Lipan
  • Yang, Chengwu
  • Lu, Xingen
  • Zhu, Junqiang

Abstract

The performance of variable cycle core compression system (VCCCS) is crucial for achieving mode transition in variable cycle engine (VCE). The double bypass matching characteristics and internal flow mechanisms of the VCCCS under various conditions are investigated in this study. The results indicate that, in the low bypass ratio (LBR) mode, Under the near choke or design point conditions of external bypass, internal bypass throttling causes the excessive blockage of low-energy fluid near the suction surface of high-pressure compressor (HPC) second stator, which leading the flow instability in VCCCS. Under the near stall condition of external bypass, internal bypass throttling causes the CDFS to reach the stall boundary firstly. The flow instability is triggered by the interaction between tip leakage flow and shock waves in CDFS rotor tip. Following mode transition, the CDFS exhibits lower flow and load, resulting in changes in the matching state of HPC due to the strong coupling effects of upstream components, thereby altering the matching characteristics and flow instability mechanisms of the VCCCS. The impact of different bypass conditions on VCCCS performance is elucidated, further establishing the association between bypass exit meridian velocity and VCCCS performance, which is helpful to select key design parameters.

Suggested Citation

  • Luo, Qiaodan & Zhao, Shengfeng & Zhou, Shiji & Wang, Haoran & Yao, Lipan & Yang, Chengwu & Lu, Xingen & Zhu, Junqiang, 2024. "Effect of double bypass conditions on the thermodynamic characteristics and internal flow mechanisms in a variable core cycle compression system," Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224019741
    DOI: 10.1016/j.energy.2024.132200
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224019741
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132200?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aygun, Hakan & Cilgin, Mehmet Emin & Ekmekci, Ismail & Turan, Onder, 2020. "Energy and performance optimization of an adaptive cycle engine for next generation combat aircraft," Energy, Elsevier, vol. 209(C).
    2. Chiaramonti, David & Prussi, Matteo & Buffi, Marco & Tacconi, Daniela, 2014. "Sustainable bio kerosene: Process routes and industrial demonstration activities in aviation biofuels," Applied Energy, Elsevier, vol. 136(C), pages 767-774.
    3. Aygun, Hakan, 2024. "Thermodynamic responses of bleed air on separated flow high by-pass turbofan engine under constant speed and constant thrust cases," Energy, Elsevier, vol. 291(C).
    4. Zhou, Nan & Price, Lynn & Yande, Dai & Creyts, Jon & Khanna, Nina & Fridley, David & Lu, Hongyou & Feng, Wei & Liu, Xu & Hasanbeigi, Ali & Tian, Zhiyu & Yang, Hongwei & Bai, Quan & Zhu, Yuezhong & Xio, 2019. "A roadmap for China to peak carbon dioxide emissions and achieve a 20% share of non-fossil fuels in primary energy by 2030," Applied Energy, Elsevier, vol. 239(C), pages 793-819.
    5. Jakovljević, Ivan & Mijailović, Radomir & Mirosavljević, Petar, 2018. "Carbon dioxide emission during the life cycle of turbofan aircraft," Energy, Elsevier, vol. 148(C), pages 866-875.
    6. Balli, Ozgur & Caliskan, Hakan, 2021. "Turbofan engine performances from aviation, thermodynamic and environmental perspectives," Energy, Elsevier, vol. 232(C).
    7. Tang, Li & Liu, Wei & Liu, Yan-Jun, 2024. "Dual design of control law and switching law for turbofan systems under multiple disturbances," Energy, Elsevier, vol. 296(C).
    8. Balli, Ozgur & Caliskan, Nesrin & Caliskan, Hakan, 2023. "Aviation, energy, exergy, sustainability, exergoenvironmental and thermoeconomic analyses of a turbojet engine fueled with jet fuel and biofuel used on a pilot trainer aircraft," Energy, Elsevier, vol. 263(PD).
    9. Cheng, Hongzhi & Zhou, Chuangxin & Lu, Xingen & Zhao, Shengfeng & Han, Ge & Yang, Chengwu, 2023. "Robust aerodynamic optimization and design exploration of a wide-chord transonic fan under geometric and operational uncertainties," Energy, Elsevier, vol. 278(PB).
    10. Ringsred, Anna & van Dyk, Susan & Saddler, John (Jack), 2021. "Life-cycle analysis of drop-in biojet fuel produced from British Columbia forest residues and wood pellets via fast-pyrolysis," Applied Energy, Elsevier, vol. 287(C).
    11. Seifritz, W., 1995. "Avoiding excessive greenhouse effect by delayed emission of carbon dioxide from the fossil-fuel cycle," Applied Energy, Elsevier, vol. 51(1), pages 39-49.
    12. Luo, Qiaodan & Zhao, Shengfeng & Zhou, Shiji & Yao, Lipan & Yang, Chengwu & Lu, Xingen & Zhu, Junqiang, 2024. "Influence of diversified dihedral stator on the thermodynamic performance and flow loss characteristics of a variable core driven fan stage," Energy, Elsevier, vol. 294(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balli, Ozgur & Karakoc, T. Hikmet, 2022. "Exergetic, exergoeconomic, exergoenvironmental damage cost and impact analyses of an aircraft turbofan engine(ATFE)," Energy, Elsevier, vol. 256(C).
    2. Aygun, Hakan, 2022. "Thermodynamic, environmental and sustainability calculations of a conceptual turboshaft engine under several power settings," Energy, Elsevier, vol. 245(C).
    3. Aygun, Hakan & Erkara, Seref & Turan, Onder, 2022. "Comprehensive exergo- sustainability analysis for a next generation aero engine," Energy, Elsevier, vol. 239(PD).
    4. Korba, Peter & Balli, Ozgur & Caliskan, Hakan & Al-Rabeei, Samer & Kale, Utku, 2023. "Energy, exergy, economic, environmental, and sustainability assessments of the CFM56-3 series turbofan engine used in the aviation sector," Energy, Elsevier, vol. 269(C).
    5. Abdalla, Muftah S.M. & Balli, Ozgur & Adali, Osama H. & Korba, Peter & Kale, Utku, 2023. "Thermodynamic, sustainability, environmental and damage cost analyses of jet fuel starter gas turbine engine," Energy, Elsevier, vol. 267(C).
    6. Wang, Busheng & Xuan, Yimin, 2024. "Heuristic deepening of aero engine performance analysis model based on thermodynamic principle of variable mass system," Energy, Elsevier, vol. 306(C).
    7. Kagan Ayaz, S. & Caliskan, Hakan & Altuntas, Onder, 2023. "Environmental and second law analysis of a turbojet engine operating with different fuels," Energy, Elsevier, vol. 285(C).
    8. Karabacak, Mustafa & Kirmizi, Mehmet & Aygun, Hakan & Turan, Onder, 2023. "Application of exergetic analysis to inverted Brayton cycle engine at different flight conditions," Energy, Elsevier, vol. 283(C).
    9. Cui, Qi & He, Ling & Han, Guoyi & Chen, Hao & Cao, Juanjuan, 2020. "Review on climate and water resource implications of reducing renewable power curtailment in China: A nexus perspective," Applied Energy, Elsevier, vol. 267(C).
    10. Zou, Chenchen & Ma, Minda & Zhou, Nan & Feng, Wei & You, Kairui & Zhang, Shufan, 2023. "Toward carbon free by 2060: A decarbonization roadmap of operational residential buildings in China," Energy, Elsevier, vol. 277(C).
    11. Wang, Busheng & Xuan, Yimin, 2023. "An integrated model for energy management of aero engines based on thermodynamic principle of variable mass systems," Energy, Elsevier, vol. 276(C).
    12. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
    13. Huang, Ying & Liao, Cuiping & Zhang, Jingjing & Guo, Hongxu & Zhou, Nan & Zhao, Daiqing, 2019. "Exploring potential pathways towards urban greenhouse gas peaks: A case study of Guangzhou, China," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    14. Donoso, David & Bolonio, David & Ballesteros, Rosario & Lapuerta, Magín & Canoira, Laureano, 2022. "Hydrogenated orange oil: A waste derived drop-in biojet fuel," Renewable Energy, Elsevier, vol. 188(C), pages 1049-1058.
    15. Akdeniz, Halil Yalcin, 2022. "Landing and take-off (LTO) flight phase performances of various piston-prop aviation engines in terms of energy, exergy, irreversibility, aviation, sustainability and environmental viewpoints," Energy, Elsevier, vol. 243(C).
    16. Aygun, Hakan & Kirmizi, Mehmet & Turan, Onder, 2022. "Propeller effects on energy, exergy and sustainability parameters of a small turboprop engine," Energy, Elsevier, vol. 249(C).
    17. Aygun, Hakan, 2024. "Effects of air to fuel ratio on parameters of combustor used for gas turbine engines: Applications of turbojet, turbofan, turboprop and turboshaft," Energy, Elsevier, vol. 305(C).
    18. Qiang Wang & Thomas Dogot & Xianlei Huang & Linna Fang & Changbin Yin, 2020. "Coupling of Rural Energy Structure and Straw Utilization: Based on Cases in Hebei, China," Sustainability, MDPI, vol. 12(3), pages 1-21, January.
    19. Balli, Ozgur, 2023. "Exergetic, sustainability and environmental assessments of a turboshaft engine used on helicopter," Energy, Elsevier, vol. 276(C).
    20. Liang, Zhirong & Liu, Haoye & Han, Zhangliang & Fan, Yukun & Lei, Lei, 2024. "Combustion and particulate I/SVOC characteristics of an aero-engine combustor with dual-stage under operational power and injection pressure," Energy, Elsevier, vol. 302(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224019741. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.