IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v304y2024ics0360544224018619.html
   My bibliography  Save this article

Micromechanical property evolution and damage mechanism of coal subjected to ScCO2 treatment

Author

Listed:
  • He, Hengyi
  • Liu, Peng
  • Nie, Baisheng
  • Zhao, Yulong
  • Wang, Lei
  • Liu, Xianfeng
  • Deng, Bozhi
  • Zhao, Zhengduo
  • Zhang, Hao
  • Zhao, Dan
  • Bao, Song

Abstract

Carbon dioxide (CO2) injection into deep coal seams holds considerable significance in both carbon mitigation and enhanced recovery of clean coalbed methane (CBM). The CO2-coal interaction leads to changes in the physicochemical properties, potentially impacting the stability of the target sequestration coal reservoir. This study applied the nanoindentation, scanning probe microscopy (SPM), X-ray diffraction (XRD), and electron probe X-ray Micro-Analyzer (EPMA) techniques to probe the micromechanical property change and damage mechanism of coal subjected to ScCO2 injection. The result shows that the load-displacement behavior of the tested coal changes with continuous ScCO2 treatment, and the mechanical strength significantly weakens after 4 days of ScCO2 treatment. The nanoindentation test indicates that the peak and creep displacements of tested coal increased by 168.79 % and 1046.32 % respectively with 4-day ScCO2 treatment, inferring that the coal deformation increases and changes from elastic to plastic after ScCO2 injection. As the ScCO2 treatment time increases, Young's modulus and hardness of coal exhibit an exponential decay trend and rapidly decrease by 77.77 %∼89.76 % and 68.37 %∼81.63 % respectively after the initial 3-day treatment, followed by a slow decrease with the ScCO2 duration prolonging. The XRD and EPMA results show that the carbonate minerals reacted preferentially with ScCO2, and silicate minerals experienced gradual dissolution, while the amorphous carbon fluctuated almost unchanged in the tested coal. Carbonate minerals in tested coal have decreased by 70.68 % within the first 1-day ScCO2 treatment, making the most significant contribution to the initial rapid weakening of coal mechanics. The mineral distribution is closely related to the mechanical anisotropy of coal, which is confirmed by the phenomenon that the coal anisotropy gradually weakens with the mineral reaction process. It is inferred that the mineral component and distribution of coal seams are important indicators for evaluating the intensity of physical and chemical reactions in ScCO2-injected reservoirs, which directly determines the mechanical damage behavior of sequestration reservoirs. This research provides basic support for site selection and safety assessment of carbon sequestration in deep coal seams.

Suggested Citation

  • He, Hengyi & Liu, Peng & Nie, Baisheng & Zhao, Yulong & Wang, Lei & Liu, Xianfeng & Deng, Bozhi & Zhao, Zhengduo & Zhang, Hao & Zhao, Dan & Bao, Song, 2024. "Micromechanical property evolution and damage mechanism of coal subjected to ScCO2 treatment," Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224018619
    DOI: 10.1016/j.energy.2024.132087
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224018619
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132087?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Su, Erlei & Liang, Yunpei & Chen, Xiangjun & Wang, Zhaofeng & Ni, Xiaoming & Zou, Quanle & Chen, Haidong & Wei, Jiaqi, 2023. "Relationship between pore structure and mechanical properties of bituminous coal under sub-critical and super-critical CO2 treatment," Energy, Elsevier, vol. 280(C).
    2. Koivunen, Tero & Khosravi, Ali & Syri, Sanna, 2023. "The role of power – to – hydrogen in carbon neutral energy and industrial systems: Case Finland," Energy, Elsevier, vol. 284(C).
    3. Elzen, Michel den & Fekete, Hanna & Höhne, Niklas & Admiraal, Annemiek & Forsell, Nicklas & Hof, Andries F. & Olivier, Jos G.J. & Roelfsema, Mark & van Soest, Heleen, 2016. "Greenhouse gas emissions from current and enhanced policies of China until 2030: Can emissions peak before 2030?," Energy Policy, Elsevier, vol. 89(C), pages 224-236.
    4. Zhang, Guanglei & Ranjith, P.G. & Lyu, Qiao, 2022. "Direct evidence of CO2 softening effects on coal using nanoindentation," Energy, Elsevier, vol. 254(PA).
    5. Guang, Wenfeng & Zhang, Zhenyu & Zhang, Lei & Ranjith, P.G. & Hao, Shengpeng & Liu, Xiaoqian, 2023. "Confinement effect on transport diffusivity of adsorbed CO2–CH4 mixture in coal nanopores for CO2 sequestration and enhanced CH4 recovery," Energy, Elsevier, vol. 278(PA).
    6. Guo, Hongguang & Zhang, Yujie & Zhang, Yiwen & Li, Xingfeng & Li, Zhigang & Liang, Weiguo & Huang, Zaixing & Urynowicz, Michael & Ali, Muhammad Ishtiaq, 2021. "Feasibility study of enhanced biogenic coalbed methane production by super-critical CO2 extraction," Energy, Elsevier, vol. 214(C).
    7. Liu, Ang & Liu, Shimin, 2022. "Mechanical property alterations across coal matrix due to water-CO2 treatments: A micro-to-nano scale experimental study," Energy, Elsevier, vol. 248(C).
    8. Juan Alcalde & Stephanie Flude & Mark Wilkinson & Gareth Johnson & Katriona Edlmann & Clare E. Bond & Vivian Scott & Stuart M. V. Gilfillan & Xènia Ogaya & R. Stuart Haszeldine, 2018. "Estimating geological CO2 storage security to deliver on climate mitigation," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    9. Paul Stegmann & Vassilis Daioglou & Marc Londo & Detlef P. Vuuren & Martin Junginger, 2022. "Plastic futures and their CO2 emissions," Nature, Nature, vol. 612(7939), pages 272-276, December.
    10. Huang, Yun-Hsun & Wu, Jung-Hua, 2013. "Analyzing the driving forces behind CO2 emissions and reduction strategies for energy-intensive sectors in Taiwan, 1996–2006," Energy, Elsevier, vol. 57(C), pages 402-411.
    11. Chen, Kang & Liu, Xianfeng & Nie, Baisheng & Zhang, Chengpeng & Song, Dazhao & Wang, Longkang & Yang, Tao, 2022. "Mineral dissolution and pore alteration of coal induced by interactions with supercritical CO2," Energy, Elsevier, vol. 248(C).
    12. Niu, Qinghe & Wang, Qizhi & Wang, Wei & Chang, Jiangfang & Chen, Mingyi & Wang, Haichao & Cai, Nian & Fan, Li, 2022. "Responses of multi-scale microstructures, physical-mechanical and hydraulic characteristics of roof rocks caused by the supercritical CO2-water-rock reaction," Energy, Elsevier, vol. 238(PB).
    13. Kevin Rennert & Frank Errickson & Brian C. Prest & Lisa Rennels & Richard G. Newell & William Pizer & Cora Kingdon & Jordan Wingenroth & Roger Cooke & Bryan Parthum & David Smith & Kevin Cromar & Dela, 2022. "Comprehensive evidence implies a higher social cost of CO2," Nature, Nature, vol. 610(7933), pages 687-692, October.
    14. Zhi-Fu Mi & Yi-Ming Wei & Bing Wang & Jing Meng & Zhu Liu & Yuli Shan & Jingru Liu & Dabo Guan, 2017. "Socioeconomic impact assessment of China's CO2 emissions peak prior to 2030," CEEP-BIT Working Papers 103, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    15. Perera, M.S.A. & Ranjith, P.G. & Viete, D.R., 2013. "Effects of gaseous and super-critical carbon dioxide saturation on the mechanical properties of bituminous coal from the Southern Sydney Basin," Applied Energy, Elsevier, vol. 110(C), pages 73-81.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chu, Baoju & Dong, Yizhe & Liu, Yaorong & Ma, Diandian & Wang, Tianju, 2024. "Does China's emission trading scheme affect corporate financial performance: Evidence from a quasi-natural experiment," Economic Modelling, Elsevier, vol. 132(C).
    2. Yongzan, Wen & Guanhua, Ni & Xinyue, Zhang & Yicheng, Zheng & Gang, Wang & Zhenyang, Wang & Qiming, Huang, 2023. "Fine characterization of pore structure of acidified anthracite based on liquid intrusion method and Micro-CT," Energy, Elsevier, vol. 263(PA).
    3. Zhang, Chaolin & Wang, Enyuan & Li, Bobo & Kong, Xiangguo & Xu, Jiang & Peng, Shoujian & Chen, Yuexia, 2023. "Laboratory experiments of CO2-enhanced coalbed methane recovery considering CO2 sequestration in a coal seam," Energy, Elsevier, vol. 262(PA).
    4. Wang, Jie & Xiong, Yiling & Tian, Xin & Liu, Shangwei & Li, Jiashuo & Tanikawa, Hiroki, 2018. "Stagnating CO2 emissions with in-depth socioeconomic transition in Beijing," Applied Energy, Elsevier, vol. 228(C), pages 1714-1725.
    5. Zhou, Sheng & Tong, Qing & Pan, Xunzhang & Cao, Min & Wang, Hailin & Gao, Ji & Ou, Xunmin, 2021. "Research on low-carbon energy transformation of China necessary to achieve the Paris agreement goals: A global perspective," Energy Economics, Elsevier, vol. 95(C).
    6. Zhao, Weizhong & Su, Xianbo & Xia, Daping & Hou, Shihui & Wang, Qian & Zhou, Yixuan, 2022. "Enhanced coalbed methane recovery by the modification of coal reservoir under the supercritical CO2 extraction and anaerobic digestion," Energy, Elsevier, vol. 259(C).
    7. Wang, Xiaolei & Zhang, Dongming & Liu, Huihui & Jin, Zhehui & Yue, Tongfang & Zhang, Hao, 2022. "Investigation on the influences of CO2 adsorption on the mechanical properties of anthracite by Brazilian splitting test," Energy, Elsevier, vol. 259(C).
    8. Yu, Shiwei & Zheng, Shuhong & Li, Xia, 2018. "The achievement of the carbon emissions peak in China: The role of energy consumption structure optimization," Energy Economics, Elsevier, vol. 74(C), pages 693-707.
    9. Hou, Yudong & Xiao, Caiyun & Fu, Wenyu & Ge, Zhaolong & Jia, Yunzhong, 2024. "Dissolution-induced pore-matrix-fracture characteristics evolution due to supercritical CO2," Energy, Elsevier, vol. 302(C).
    10. Tao Song & Xinling Zou & Nuo Wang & Danyang Zhang & Yuxiang Zhao & Erdan Wang, 2023. "Prediction of China’s Carbon Peak Attainment Pathway from Both Production-Side and Consumption-Side Perspectives," Sustainability, MDPI, vol. 15(6), pages 1-15, March.
    11. Liangpeng Wu & Qingyuan Zhu, 2021. "Impacts of the carbon emission trading system on China’s carbon emission peak: a new data-driven approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2487-2515, July.
    12. Wang, Zhaohua & Li, Yiming & Cai, Hailin & Yang, Yuantao & Wang, Bo, 2019. "Regional difference and drivers in China's carbon emissions embodied in internal trade," Energy Economics, Elsevier, vol. 83(C), pages 217-228.
    13. Wang, Zhaohua & Huang, Wanjing & Chen, Zhongfei, 2019. "The peak of CO2 emissions in China: A new approach using survival models," Energy Economics, Elsevier, vol. 81(C), pages 1099-1108.
    14. Xu, Guangyue & Schwarz, Peter & Yang, Hualiu, 2020. "Adjusting energy consumption structure to achieve China's CO2 emissions peak," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    15. Guo, Xuepeng & Pang, Jun, 2023. "Analysis of provincial CO2 emission peaking in China: Insights from production and consumption," Applied Energy, Elsevier, vol. 331(C).
    16. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Research on the peak of CO2 emissions in the developing world: Current progress and future prospect," Applied Energy, Elsevier, vol. 235(C), pages 186-203.
    17. Dabbaghi, Ehsan & Ng, Kam, 2024. "Effects of CO2 on the mineralogy, mechanical, and transport properties of rocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    18. Xu, Guangyue & Schwarz, Peter & Yang, Hualiu, 2019. "Determining China's CO2 emissions peak with a dynamic nonlinear artificial neural network approach and scenario analysis," Energy Policy, Elsevier, vol. 128(C), pages 752-762.
    19. Song, Haoran & Zhong, Zheng & Lin, Baiquan, 2023. "Chemical dissolution of minerals in anthracite after supercritical carbon dioxide immersion: Considering mechanical damage and enhanced porosity," Energy, Elsevier, vol. 283(C).
    20. Wang, Juan & Hu, Mingming & Tukker, Arnold & Rodrigues, João F.D., 2019. "The impact of regional convergence in energy-intensive industries on China's CO2 emissions and emission goals," Energy Economics, Elsevier, vol. 80(C), pages 512-523.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224018619. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.