IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v89y2016icp224-236.html
   My bibliography  Save this article

Greenhouse gas emissions from current and enhanced policies of China until 2030: Can emissions peak before 2030?

Author

Listed:
  • Elzen, Michel den
  • Fekete, Hanna
  • Höhne, Niklas
  • Admiraal, Annemiek
  • Forsell, Nicklas
  • Hof, Andries F.
  • Olivier, Jos G.J.
  • Roelfsema, Mark
  • van Soest, Heleen

Abstract

In June 2015, China announced its post-2020 reduction targets, its central element being the intention to peak CO2 emissions by 2030 or earlier. China has implemented several policies to reduce its greenhouse gas (GHG) emissions. This study provides emission projections for China up to 2030 given current policies and a selected set of enhanced policies, and compares the results with projected CO2 emission trajectories that are consistent with the announced target for 2030. The projections are based on existing scenarios and energy system and land use model calculations. We project that the 2030 CO2 emission level consistent with a peak in CO2 emissions by 2030 ranges from 11.3 to 11.8 GtCO2. The corresponding total GHG emission level ranges from 13.5 to 14.0 GtCO2e in 2030. Current policies are likely not to be sufficient to achieve the 2030 targets, as our projected total GHG emission level under current policies ranges from 14.7 to 15.4 GtCO2e by 2030. However, an illustrative set of enhancement policy measures, all of which are related to national priorities, leads to projected GHG emission levels from 13.1 to 13.7 GtCO2e by 2030 – and thus below the levels necessary for peaking CO2 emissions before 2030.

Suggested Citation

  • Elzen, Michel den & Fekete, Hanna & Höhne, Niklas & Admiraal, Annemiek & Forsell, Nicklas & Hof, Andries F. & Olivier, Jos G.J. & Roelfsema, Mark & van Soest, Heleen, 2016. "Greenhouse gas emissions from current and enhanced policies of China until 2030: Can emissions peak before 2030?," Energy Policy, Elsevier, vol. 89(C), pages 224-236.
  • Handle: RePEc:eee:enepol:v:89:y:2016:i:c:p:224-236
    DOI: 10.1016/j.enpol.2015.11.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421515302081
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2015.11.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Terry Townshend & Sam Fankhauser & Adam Matthews & Clément Feger & Jin Liu & Thais Narciso, 2011. "GLOBE climate legislation study," Working Papers hal-01930971, HAL.
    2. Kejun Jiang & Xing Zhuang & Ren Miao & Chenmin He, 2013. "China's role in attaining the global 2°C target," Climate Policy, Taylor & Francis Journals, vol. 13(sup01), pages 55-69, March.
    3. Daniel Johansson & Paul Lucas & Matthias Weitzel & Erik Ahlgren & A. Bazaz & Wenying Chen & Michel Elzen & Joydeep Ghosh & Maria Grahn & Qiao-Mei Liang & Sonja Peterson & Basanta Pradhan & Bas Ruijven, 2015. "Multi-model comparison of the economic and energy implications for China and India in an international climate regime," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(8), pages 1335-1359, December.
    4. Chen, Wenying & Wu, Zongxin & He, Jiankun & Gao, Pengfei & Xu, Shaofeng, 2007. "Carbon emission control strategies for China: A comparative study with partial and general equilibrium versions of the China MARKAL model," Energy, Elsevier, vol. 32(1), pages 59-72.
    5. Richerzhagen, Carmen & von Frieling, Tabea & Hansen, Nils & Minnaert, Anja & Netzer, Nina & Rußbild, Jonas, 2008. "Energy efficiency in buildings in China: policies, barriers and opportunities," IDOS Studies, German Institute of Development and Sustainability (IDOS), volume 41, number 41, July.
    6. Zhu Liu & Dabo Guan & Wei Wei & Steven J. Davis & Philippe Ciais & Jin Bai & Shushi Peng & Qiang Zhang & Klaus Hubacek & Gregg Marland & Robert J. Andres & Douglas Crawford-Brown & Jintai Lin & Hongya, 2015. "Reduced carbon emission estimates from fossil fuel combustion and cement production in China," Nature, Nature, vol. 524(7565), pages 335-338, August.
    7. Massimo Tavoni & Elmar Kriegler & Keywan Riahi & Detlef P. van Vuuren & Tino Aboumahboub & Alex Bowen & Katherine Calvin & Emanuele Campiglio & Tom Kober & Jessica Jewell & Gunnar Luderer & Giacomo Ma, 2015. "Post-2020 climate agreements in the major economies assessed in the light of global models," Nature Climate Change, Nature, vol. 5(2), pages 119-126, February.
    8. den Elzen, Michel G.J. & Hof, Andries F. & Roelfsema, Mark, 2013. "Analysing the greenhouse gas emission reductions of the mitigation action plans by non-Annex I countries by 2020," Energy Policy, Elsevier, vol. 56(C), pages 633-643.
    9. Zhou, Nan & Levine, Mark D. & Price, Lynn, 2010. "Overview of current energy-efficiency policies in China," Energy Policy, Elsevier, vol. 38(11), pages 6439-6452, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. ZhongXiang Zhang, 2017. "Are China's climate commitments in a post‐Paris agreement sufficiently ambitious?," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 8(2), March.
    2. Zhang, ZhongXiang, "undated". "Making China the transition to a low-carbon economy: Key challenges and responses," Working Papers 249516, Australian National University, Centre for Climate Economics & Policy.
    3. Yalan Zhao & Yaoqiu Kuang & Ningsheng Huang, 2016. "Decomposition Analysis in Decoupling Transport Output from Carbon Emissions in Guangdong Province, China," Energies, MDPI, vol. 9(4), pages 1-23, April.
    4. Li, Yiming & Wang, Zhaohua & He, Weijun & Zhao, Yuandong & Xu, Ming & Zhang, Bin, 2021. "Critical transmission sectors for CO2 emission mitigation in supply chains," Technological Forecasting and Social Change, Elsevier, vol. 164(C).
    5. Roelfsema, Mark & Elzen, Michel den & Höhne, Niklas & Hof, Andries F. & Braun, Nadine & Fekete, Hanna & Böttcher, Hannes & Brandsma, Ruut & Larkin, Julia, 2014. "Are major economies on track to achieve their pledges for 2020? An assessment of domestic climate and energy policies," Energy Policy, Elsevier, vol. 67(C), pages 781-796.
    6. Qiang Liu & Alun Gu & Fei Teng & Ranping Song & Yi Chen, 2017. "Peaking China’s CO 2 Emissions: Trends to 2030 and Mitigation Potential," Energies, MDPI, vol. 10(2), pages 1-22, February.
    7. Andreas Oberheitmann, 2012. "CO 2 -emission reduction in China’s residential building sector and contribution to the national climate change mitigation targets in 2020," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(7), pages 769-791, October.
    8. Fang, Kai & Li, Chenglin & Tang, Yiqi & He, Jianjian & Song, Junnian, 2022. "China’s pathways to peak carbon emissions: New insights from various industrial sectors," Applied Energy, Elsevier, vol. 306(PA).
    9. Mischke, Peggy & Karlsson, Kenneth B., 2014. "Modelling tools to evaluate China's future energy system – A review of the Chinese perspective," Energy, Elsevier, vol. 69(C), pages 132-143.
    10. Zhou, Lu & Li, Jing & Chiang, Yat Hung, 2013. "Promoting energy efficient building in China through clean development mechanism," Energy Policy, Elsevier, vol. 57(C), pages 338-346.
    11. Reynolds, Travis & Kolodinsky, Jane & Murray, Byron, 2012. "Consumer preferences and willingness to pay for compact fluorescent lighting: Policy implications for energy efficiency promotion in Saint Lucia," Energy Policy, Elsevier, vol. 41(C), pages 712-722.
    12. Zhang, ZhongXiang, 2014. "Programs, Prices and Policies Towards Energy Conservation and Environmental Quality in China," Working Papers 249427, Australian National University, Centre for Climate Economics & Policy.
    13. Ettore Bompard & Daniele Grosso & Tao Huang & Francesco Profumo & Xianzhang Lei & Duo Li, 2018. "World Decarbonization through Global Electricity Interconnections," Energies, MDPI, vol. 11(7), pages 1-29, July.
    14. Shirzad, Mohammad & Kazemi Shariat Panahi, Hamed & Dashti, Behrouz B. & Rajaeifar, Mohammad Ali & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2019. "A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 571-594.
    15. Man, Yi & Yan, Yukun & Wang, Xu & Ren, Jingzheng & Xiong, Qingang & He, Zhenglei, 2023. "Overestimated carbon emission of the pulp and paper industry in China," Energy, Elsevier, vol. 273(C).
    16. Zhang, Haoran & Li, Ruixiong & Cai, Xingrui & Zheng, Chaoyue & Liu, Laibao & Liu, Maodian & Zhang, Qianru & Lin, Huiming & Chen, Long & Wang, Xuejun, 2022. "Do electricity flows hamper regional economic–environmental equity?," Applied Energy, Elsevier, vol. 326(C).
    17. Chen, Yuhong & Lyu, Yanfeng & Yang, Xiangdong & Zhang, Xiaohong & Pan, Hengyu & Wu, Jun & Lei, Yongjia & Zhang, Yanzong & Wang, Guiyin & Xu, Min & Luo, Hongbin, 2022. "Performance comparison of urea production using one set of integrated indicators considering energy use, economic cost and emissions’ impacts: A case from China," Energy, Elsevier, vol. 254(PC).
    18. Delarue, E.D. & Ellerman, A.D. & D'haeseleer, W.D., 2010. "Robust MACCs? The topography of abatement by fuel switching in the European power sector," Energy, Elsevier, vol. 35(3), pages 1465-1475.
    19. Zhang, ZhongXiang, 2013. "Energy and Environmental Issues and Policy in China," Climate Change and Sustainable Development 162375, Fondazione Eni Enrico Mattei (FEEM).
    20. Igos, Elorri & Rugani, Benedetto & Rege, Sameer & Benetto, Enrico & Drouet, Laurent & Zachary, Daniel S., 2015. "Combination of equilibrium models and hybrid life cycle-input–output analysis to predict the environmental impacts of energy policy scenarios," Applied Energy, Elsevier, vol. 145(C), pages 234-245.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:89:y:2016:i:c:p:224-236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.