IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v302y2024ics0360544224015937.html
   My bibliography  Save this article

Dissolution-induced pore-matrix-fracture characteristics evolution due to supercritical CO2

Author

Listed:
  • Hou, Yudong
  • Xiao, Caiyun
  • Fu, Wenyu
  • Ge, Zhaolong
  • Jia, Yunzhong

Abstract

Geological carbon dioxide (CO2) storage in deep, unmineable coal seams represents a promising strategy for carbon emissions reduction. This approach involves pore and fracture alteration due to injecting supercritical CO2 (SCCO2), which is crucial for long-term safe storage of CO2 and extracting coalbed methane. This study quantitatively characterized pores and fractures before and after SCCO2 saturation using nuclear magnetic resonance (NMR). The results show an average 89 % increase in total porosity after SCCO2 treatment. The proportion of macropores significantly increased, resulting in a wider range of pore sizes, with the average of macropore porosity increased by more than seven times. Furthermore, SCCO2 exposure reduced the fractal dimension, resulting in smoother pores conducive to gas transport. The alterations in pore type induced by SCCO2 were discussed, in which original fractures exhibited increased apertures after SCCO2 exposure, accompanied by new Y-shaped secondary fractures, while XRD analysis explained mineral dissolution and precipitation. A conceptual model considering the swelling coefficient in matrix-fracture development under SCCO2 dissolution is proposed based on the correlation between seepage pores and adsorption pores. Furthermore, the influence of pore morphology on the development of pores and fractures under SCCO2 exposure was analyzed, offering valuable insights into the CO2-ECBM project.

Suggested Citation

  • Hou, Yudong & Xiao, Caiyun & Fu, Wenyu & Ge, Zhaolong & Jia, Yunzhong, 2024. "Dissolution-induced pore-matrix-fracture characteristics evolution due to supercritical CO2," Energy, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224015937
    DOI: 10.1016/j.energy.2024.131820
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224015937
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131820?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224015937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.