IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-04423-1.html
   My bibliography  Save this article

Estimating geological CO2 storage security to deliver on climate mitigation

Author

Listed:
  • Juan Alcalde

    (University of Aberdeen)

  • Stephanie Flude

    (University of Edinburgh)

  • Mark Wilkinson

    (University of Edinburgh)

  • Gareth Johnson

    (University of Edinburgh)

  • Katriona Edlmann

    (University of Edinburgh)

  • Clare E. Bond

    (University of Aberdeen)

  • Vivian Scott

    (University of Edinburgh)

  • Stuart M. V. Gilfillan

    (University of Edinburgh)

  • Xènia Ogaya

    (Universitat de Barcelona)

  • R. Stuart Haszeldine

    (University of Edinburgh)

Abstract

Carbon capture and storage (CCS) can help nations meet their Paris CO2 reduction commitments cost-effectively. However, lack of confidence in geologic CO2 storage security remains a barrier to CCS implementation. Here we present a numerical program that calculates CO2 storage security and leakage to the atmosphere over 10,000 years. This combines quantitative estimates of geological subsurface CO2 retention, and of surface CO2 leakage. We calculate that realistically well-regulated storage in regions with moderate well densities has a 50% probability that leakage remains below 0.0008% per year, with over 98% of the injected CO2 retained in the subsurface over 10,000 years. An unrealistic scenario, where CO2 storage is inadequately regulated, estimates that more than 78% will be retained over 10,000 years. Our modelling results suggest that geological storage of CO2 can be a secure climate change mitigation option, but we note that long-term behaviour of CO2 in the subsurface remains a key uncertainty.

Suggested Citation

  • Juan Alcalde & Stephanie Flude & Mark Wilkinson & Gareth Johnson & Katriona Edlmann & Clare E. Bond & Vivian Scott & Stuart M. V. Gilfillan & Xènia Ogaya & R. Stuart Haszeldine, 2018. "Estimating geological CO2 storage security to deliver on climate mitigation," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04423-1
    DOI: 10.1038/s41467-018-04423-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-04423-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-04423-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04423-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.