IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i6p4844-d1091913.html
   My bibliography  Save this article

Prediction of China’s Carbon Peak Attainment Pathway from Both Production-Side and Consumption-Side Perspectives

Author

Listed:
  • Tao Song

    (School of Economics and Resource Management, Beijing Normal University, Beijing 100875, China)

  • Xinling Zou

    (School of Economics and Resource Management, Beijing Normal University, Beijing 100875, China)

  • Nuo Wang

    (School of Economics and Resource Management, Beijing Normal University, Beijing 100875, China)

  • Danyang Zhang

    (School of Economics and Resource Management, Beijing Normal University, Beijing 100875, China)

  • Yuxiang Zhao

    (School of Economics and Resource Management, Beijing Normal University, Beijing 100875, China)

  • Erdan Wang

    (School of Economics and Resource Management, Beijing Normal University, Beijing 100875, China)

Abstract

To achieve global sustainable development and actively respond to climate change, China, as the world’s largest energy consumer and carbon emitter, needs to save energy and reduce emissions without delay. By constructing LEAP-China production-side and LEAP-China consumption-side models, we predict the carbon emissions of China’s production side and consumption side in different scenarios from 2020 to 2050, respectively. The results show that under the current policies, neither the production side nor consumption side can achieve targeted peak carbon emissions by 2030, which is contrary to China’s current carbon emission policy. Under the sustainable development scenario, China’s production-side CO 2 emissions would peak at 10,462.2 Mt in 2029, and China’s consumption-side CO 2 emissions would peak 3 years later compared to the production side at 9904.3 Mt in 2032. Therefore, to achieve the peak for both the production and consumption side, we need to coordinate various policies and actively promote industrial restructuring and energy structure optimization. In terms of trade structure, China’s existing import and export trade structure should be adjusted to reduce the export of industrially manufactured goods and increase the proportion of technology-intensive products in foreign trade to realize the transformation from a high-carbon trade structure to a low-carbon trade structure.

Suggested Citation

  • Tao Song & Xinling Zou & Nuo Wang & Danyang Zhang & Yuxiang Zhao & Erdan Wang, 2023. "Prediction of China’s Carbon Peak Attainment Pathway from Both Production-Side and Consumption-Side Perspectives," Sustainability, MDPI, vol. 15(6), pages 1-15, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:4844-:d:1091913
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/6/4844/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/6/4844/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Xiliang & Karplus, Valerie J. & Qi, Tianyu & Zhang, Da & He, Jiankun, 2016. "Carbon emissions in China: How far can new efforts bend the curve?," Energy Economics, Elsevier, vol. 54(C), pages 388-395.
    2. Zhou, Nan & Fridley, David & Khanna, Nina Zheng & Ke, Jing & McNeil, Michael & Levine, Mark, 2013. "China's energy and emissions outlook to 2050: Perspectives from bottom-up energy end-use model," Energy Policy, Elsevier, vol. 53(C), pages 51-62.
    3. Shao, Shuai & Liu, Jianghua & Geng, Yong & Miao, Zhuang & Yang, Yingchun, 2016. "Uncovering driving factors of carbon emissions from China’s mining sector," Applied Energy, Elsevier, vol. 166(C), pages 220-238.
    4. Suri, Vivek & Chapman, Duane, 1998. "Economic growth, trade and energy: implications for the environmental Kuznets curve," Ecological Economics, Elsevier, vol. 25(2), pages 195-208, May.
    5. Xu, Guangyue & Schwarz, Peter & Yang, Hualiu, 2019. "Determining China's CO2 emissions peak with a dynamic nonlinear artificial neural network approach and scenario analysis," Energy Policy, Elsevier, vol. 128(C), pages 752-762.
    6. Shabbir, Rabia & Ahmad, Sheikh Saeed, 2010. "Monitoring urban transport air pollution and energy demand in Rawalpindi and Islamabad using leap model," Energy, Elsevier, vol. 35(5), pages 2323-2332.
    7. Sun, Yuying & Wang, Shouyang & Zhang, Xun, 2018. "How efficient are China's macroeconomic forecasts? Evidences from a new forecasting evaluation approach," Economic Modelling, Elsevier, vol. 68(C), pages 506-513.
    8. Weber, Christopher L. & Peters, Glen P. & Guan, Dabo & Hubacek, Klaus, 2008. "The contribution of Chinese exports to climate change," Energy Policy, Elsevier, vol. 36(9), pages 3572-3577, September.
    9. Ates, Seyithan A., 2015. "Energy efficiency and CO2 mitigation potential of the Turkish iron and steel industry using the LEAP (long-range energy alternatives planning) system," Energy, Elsevier, vol. 90(P1), pages 417-428.
    10. Zhou, Nan & Price, Lynn & Yande, Dai & Creyts, Jon & Khanna, Nina & Fridley, David & Lu, Hongyou & Feng, Wei & Liu, Xu & Hasanbeigi, Ali & Tian, Zhiyu & Yang, Hongwei & Bai, Quan & Zhu, Yuezhong & Xio, 2019. "A roadmap for China to peak carbon dioxide emissions and achieve a 20% share of non-fossil fuels in primary energy by 2030," Applied Energy, Elsevier, vol. 239(C), pages 793-819.
    11. Hong, Sungjun & Chung, Yanghon & Kim, Jongwook & Chun, Dongphil, 2016. "Analysis on the level of contribution to the national greenhouse gas reduction target in Korean transportation sector using LEAP model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 549-559.
    12. Elzen, Michel den & Fekete, Hanna & Höhne, Niklas & Admiraal, Annemiek & Forsell, Nicklas & Hof, Andries F. & Olivier, Jos G.J. & Roelfsema, Mark & van Soest, Heleen, 2016. "Greenhouse gas emissions from current and enhanced policies of China until 2030: Can emissions peak before 2030?," Energy Policy, Elsevier, vol. 89(C), pages 224-236.
    13. Jiahua Pan & Jonathan Phillips & Ying Chen, 2008. "China's balance of emissions embodied in trade: approaches to measurement and allocating international responsibility," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 24(2), pages 354-376, Summer.
    14. Xuemei Jiang & Quanrun Chen & Dabo Guan & Kunfu Zhu & Cuihong Yang, 2016. "Revisiting the Global Net Carbon Dioxide Emission Transfers by International Trade: The Impact of Trade Heterogeneity of China," Journal of Industrial Ecology, Yale University, vol. 20(3), pages 506-514, June.
    15. Blanca Gallego & Manfred Lenzen, 2005. "A consistent input-output formulation of shared producer and consumer responsibility," Economic Systems Research, Taylor & Francis Journals, vol. 17(4), pages 365-391.
    16. Rodrigues, João & Domingos, Tiago, 2008. "Consumer and producer environmental responsibility: Comparing two approaches," Ecological Economics, Elsevier, vol. 66(2-3), pages 533-546, June.
    17. Zhou, P. & Ang, B.W. & Han, J.Y., 2010. "Total factor carbon emission performance: A Malmquist index analysis," Energy Economics, Elsevier, vol. 32(1), pages 194-201, January.
    18. Zhi-Fu Mi & Yi-Ming Wei & Bing Wang & Jing Meng & Zhu Liu & Yuli Shan & Jingru Liu & Dabo Guan, 2017. "Socioeconomic impact assessment of China's CO2 emissions peak prior to 2030," CEEP-BIT Working Papers 103, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    19. Raskin, Paul D., 1995. "Methods for estimating the population contribution to environmental change," Ecological Economics, Elsevier, vol. 15(3), pages 225-233, December.
    20. Munksgaard, Jesper & Pedersen, Klaus Alsted, 2001. "CO2 accounts for open economies: producer or consumer responsibility?," Energy Policy, Elsevier, vol. 29(4), pages 327-334, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mariusz Pyra, 2023. "A Scenario Analysis for the Decarbonisation Process in Poland’s Road Transport Sector," European Research Studies Journal, European Research Studies Journal, vol. 0(1), pages 411-432.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Guangyue & Schwarz, Peter & Yang, Hualiu, 2020. "Adjusting energy consumption structure to achieve China's CO2 emissions peak," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    2. Boya Zhang & Shukuan Bai & Yadong Ning & Tao Ding & Yan Zhang, 2020. "Emission Embodied in International Trade and Its Responsibility from the Perspective of Global Value Chain: Progress, Trends, and Challenges," Sustainability, MDPI, vol. 12(8), pages 1-26, April.
    3. Wiedmann, Thomas, 2009. "A review of recent multi-region input-output models used for consumption-based emission and resource accounting," Ecological Economics, Elsevier, vol. 69(2), pages 211-222, December.
    4. Wencheng Zhang & Shuijun Peng, 2016. "Analysis on CO 2 Emissions Transferred from Developed Economies to China through Trade," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 24(2), pages 68-89, March.
    5. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Research on the peak of CO2 emissions in the developing world: Current progress and future prospect," Applied Energy, Elsevier, vol. 235(C), pages 186-203.
    6. Hana Nielsen & Astrid Kander, 2020. "Trade in the Carbon-Constrained Future: Exploiting the Comparative Carbon Advantage of Swedish Trade," Energies, MDPI, vol. 13(14), pages 1-25, July.
    7. Wang, Jie & Xiong, Yiling & Tian, Xin & Liu, Shangwei & Li, Jiashuo & Tanikawa, Hiroki, 2018. "Stagnating CO2 emissions with in-depth socioeconomic transition in Beijing," Applied Energy, Elsevier, vol. 228(C), pages 1714-1725.
    8. Maria Csutora & Zs�fia Vetőn� m�zner, 2014. "Proposing a beneficiary-based shared responsibility approach for calculating national carbon accounts during the post-Kyoto era," Climate Policy, Taylor & Francis Journals, vol. 14(5), pages 599-616, September.
    9. Wen Wen & Qi Wang, 2017. "Are Developed Regions in China Achieving Their CO 2 Emissions Reduction Targets on Their Own?—Case of Beijing," Energies, MDPI, vol. 10(12), pages 1-25, November.
    10. Liang, Yuanyuan & Yu, Biying & Wang, Lu, 2019. "Costs and benefits of renewable energy development in China's power industry," Renewable Energy, Elsevier, vol. 131(C), pages 700-712.
    11. Haoran Wang & Toshiyuki Fujita, 2023. "A Review of Research on Embodied Carbon in International Trade," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
    12. Rui Xie & Chao Gao & Guomei Zhao & Yu Liu & Shengcheng Xu, 2017. "Empirical Study of China’s Provincial Carbon Responsibility Sharing: Provincial Value Chain Perspective," Sustainability, MDPI, vol. 9(4), pages 1-16, April.
    13. Liu, Ying & Jayanthakumaran, Kankesu & Neri, Frank, 2013. "Who is responsible for the CO2 emissions that China produces?," Energy Policy, Elsevier, vol. 62(C), pages 1412-1419.
    14. Zhang, Xi & Geng, Yong & Shao, Shuai & Dong, Huijuan & Wu, Rui & Yao, Tianli & Song, Jiekun, 2020. "How to achieve China’s CO2 emission reduction targets by provincial efforts? – An analysis based on generalized Divisia index and dynamic scenario simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    15. Serrano, Mònica & Dietzenbacher, Erik, 2010. "Responsibility and trade emission balances: An evaluation of approaches," Ecological Economics, Elsevier, vol. 69(11), pages 2224-2232, September.
    16. Joshua Sunday Riti & Deyong Song & Yang Shu & Miriam Kamah & Agya Adi Atabani, 2018. "Does renewable energy ensure environmental quality in favour of economic growth? Empirical evidence from China’s renewable development," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(5), pages 2007-2030, September.
    17. Su, Bin & Huang, H.C. & Ang, B.W. & Zhou, P., 2010. "Input-output analysis of CO2 emissions embodied in trade: The effects of sector aggregation," Energy Economics, Elsevier, vol. 32(1), pages 166-175, January.
    18. Xu, Xueliu & Wang, Qian & Ran, Chenyang & Mu, Mingjie, 2021. "Is burden responsibility more effective? A value-added method for tracing worldwide carbon emissions," Ecological Economics, Elsevier, vol. 181(C).
    19. Guo, Xuepeng & Pang, Jun, 2023. "Analysis of provincial CO2 emission peaking in China: Insights from production and consumption," Applied Energy, Elsevier, vol. 331(C).
    20. Hehua Zhao & Hongwen Chen & Ying Fang & Apei Song, 2022. "Transfer Characteristics of Embodied Carbon Emissions in Export Trade—Evidence from China," Sustainability, MDPI, vol. 14(13), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:4844-:d:1091913. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.