IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v304y2024ics0360544224018590.html
   My bibliography  Save this article

Comparative techno-economic and environmental analysis of a relocatable solar power tower for low to medium temperature industrial process heat supply

Author

Listed:
  • Gamil, Ahmed
  • Li, Peiwen
  • Khammash, Abdel Latif
  • Ali, Babkir

Abstract

The primary objective of this study is to promote the adoption of solar power tower (SPT) technology in low to medium-temperature industrial process heat (IPH) applications and compare it with other heat generation alternatives. Through comprehensive techno-economic and environmental analyses, a proposed relocatable SPT-based IPH plant (PR-SPT-IPH), with a capacity of 1 MWth, is thoroughly evaluated against traditional concentrating solar-thermal power (CSP) technologies like parabolic trough collectors (PTC) and linear Fresnel reflectors (LFR), as well as natural gas (NG) and photovoltaic (PV)-based IPH systems. The techno-economic assessment of the PR-SPT-IPH is performed using an in-house developed MATLAB code, while the system advisor model (SAM) is used to simulate equivalent PTC-, LFR-, and PV-based IPH plants. The primary techno-economic assessment metric is the levelized cost of heat (LCOH), while the environmental analysis quantifies the avoided greenhouse gas (GHG) emissions and other pollutants resulting from NG combustion. The results show that the PR-SPT-IPH plant achieves the lowest LCOH of 2.42 cents/kWhth, generating annual thermal energy of 5.62 GWhth with a capacity factor of 48.27 %. With certain assumptions, this cost can be further reduced to 1.5 cents/kWhth, meeting the U.S. Department of Energy targets. The PR-SPT-IPH plant could annually avoid emitting 1112 kg of CO2, 54 kg of particulate matter, 1201.76 kg of NOx, and 5.08 kg of SO2. It could also save annual external costs between $43,100.28 and $153,194.67, while the annually saved fuel cost could reach $151,632. The study indicates that the PR-SPT-IPH plant surpasses PTC-, LFR-, NG-, and PV-based IPH plants both technically and financially. With reduced capital costs and appropriate incentives, the PR-SPT-IPH plant emerges as an economically and environmentally viable choice for low to medium-temperature IPH applications.

Suggested Citation

  • Gamil, Ahmed & Li, Peiwen & Khammash, Abdel Latif & Ali, Babkir, 2024. "Comparative techno-economic and environmental analysis of a relocatable solar power tower for low to medium temperature industrial process heat supply," Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224018590
    DOI: 10.1016/j.energy.2024.132085
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224018590
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Irving Cruz-Robles & Jorge M. Islas-Samperio & Claudio A. Estrada, 2022. "Levelized Cost of Heat of the CSP th Hybrid Central Tower Technology," Energies, MDPI, vol. 15(22), pages 1-23, November.
    2. Schröders, Sarah & Allelein, Hans-Josef, 2018. "Energy economic evaluation of process heat supply by solar tower and high temperature reactor based on the ammonia production process," Applied Energy, Elsevier, vol. 212(C), pages 622-639.
    3. Kalogirou, Soteris, 2003. "The potential of solar industrial process heat applications," Applied Energy, Elsevier, vol. 76(4), pages 337-361, December.
    4. Baharoon, Dhyia Aidroos & Rahman, Hasimah Abdul & Omar, Wan Zaidi Wan & Fadhl, Saeed Obaid, 2015. "Historical development of concentrating solar power technologies to generate clean electricity efficiently – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 996-1027.
    5. Riggs, Brian C. & Biedenharn, Richard & Dougher, Christopher & Ji, Yaping Vera & Xu, Qi & Romanin, Vince & Codd, Daniel S. & Zahler, James M. & Escarra, Matthew D., 2017. "Techno-economic analysis of hybrid PV/T systems for process heat using electricity to subsidize the cost of heat," Applied Energy, Elsevier, vol. 208(C), pages 1370-1378.
    6. Isidoro Lillo-Bravo & Elena Pérez-Aparicio & Natividad Sancho-Caparrini & Manuel Antonio Silva-Pérez, 2018. "Benefits of Medium Temperature Solar Concentration Technologies as Thermal Energy Source of Industrial Processes in Spain," Energies, MDPI, vol. 11(11), pages 1-30, October.
    7. Awan, Ahmed Bilal & Zubair, Muhammad & Chandra Mouli, Kotturu V.V., 2020. "Design, optimization and performance comparison of solar tower and photovoltaic power plants," Energy, Elsevier, vol. 199(C).
    8. Moumin, Gkiokchan & Ryssel, Maximilian & Zhao, Li & Markewitz, Peter & Sattler, Christian & Robinius, Martin & Stolten, Detlef, 2020. "CO2 emission reduction in the cement industry by using a solar calciner," Renewable Energy, Elsevier, vol. 145(C), pages 1578-1596.
    9. Schoeneberger, Carrie A. & McMillan, Colin A. & Kurup, Parthiv & Akar, Sertac & Margolis, Robert & Masanet, Eric, 2020. "Solar for industrial process heat: A review of technologies, analysis approaches, and potential applications in the United States," Energy, Elsevier, vol. 206(C).
    10. Sengupta, Manajit & Xie, Yu & Lopez, Anthony & Habte, Aron & Maclaurin, Galen & Shelby, James, 2018. "The National Solar Radiation Data Base (NSRDB)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 51-60.
    11. Kincaid, Nicholas & Mungas, Greg & Kramer, Nicholas & Wagner, Michael & Zhu, Guangdong, 2018. "An optical performance comparison of three concentrating solar power collector designs in linear Fresnel, parabolic trough, and central receiver," Applied Energy, Elsevier, vol. 231(C), pages 1109-1121.
    12. Ktistis, Panayiotis & Agathokleous, Rafaela A. & Kalogirou, Soteris A., 2022. "A design tool for a parabolic trough collector system for industrial process heat based on dynamic simulation," Renewable Energy, Elsevier, vol. 183(C), pages 502-514.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Irving Cruz-Robles & Jorge M. Islas-Samperio & Claudio A. Estrada, 2022. "Levelized Cost of Heat of the CSP th Hybrid Central Tower Technology," Energies, MDPI, vol. 15(22), pages 1-23, November.
    2. Hadi Tannous & Valentina Stojceska & Savas A. Tassou, 2023. "The Use of Solar Thermal Heating in SPIRE and Non-SPIRE Industrial Processes," Sustainability, MDPI, vol. 15(10), pages 1-18, May.
    3. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    4. Telesca, Antonio & Ibris, Neluta & Marroccoli, Milena & Tregambi, Claudio & Solimene, Roberto & Di Lauro, Francesca & Ruiz de Ballesteros, Odda & Salatino, Piero & Montagnaro, Fabio, 2024. "Evaluation of the technical properties of reactive-MgO cements produced by solar calcination of magnesite in a fluidized bed reactor," Renewable Energy, Elsevier, vol. 225(C).
    5. Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.
    6. Gil, Juan D. & Topa, A. & Álvarez, J.D. & Torres, J.L. & Pérez, M., 2022. "A review from design to control of solar systems for supplying heat in industrial process applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    7. Beltagy, Hani, 2021. "The effect of glass on the receiver and the use of two absorber tubes on optical performance of linear fresnel solar concentrators," Energy, Elsevier, vol. 224(C).
    8. Neupane, Deependra & Kafle, Sagar & Karki, Kaji Ram & Kim, Dae Hyun & Pradhan, Prajal, 2022. "Solar and wind energy potential assessment at provincial level in Nepal: Geospatial and economic analysis," Renewable Energy, Elsevier, vol. 181(C), pages 278-291.
    9. Deymi-Dashtebayaz, Mahdi & Kheir Abadi, Majid & Asadi, Mostafa & Khutornaya, Julia & Sergienko, Olga, 2024. "Investigation of a new solar-wind energy-based heat pump dryer for food waste drying based on different weather conditions," Energy, Elsevier, vol. 290(C).
    10. Gueymard, Christian A. & Bright, Jamie M. & Lingfors, David & Habte, Aron & Sengupta, Manajit, 2019. "A posteriori clear-sky identification methods in solar irradiance time series: Review and preliminary validation using sky imagers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 412-427.
    11. Francisco José Sepúlveda & María Teresa Miranda & Irene Montero & José Ignacio Arranz & Francisco Javier Lozano & Manuel Matamoros & Paloma Rodríguez, 2019. "Analysis of Potential Use of Linear Fresnel Collector for Direct Steam Generation in Industries of the Southwest of Europe," Energies, MDPI, vol. 12(21), pages 1-15, October.
    12. Omoyele, Olalekan & Hoffmann, Maximilian & Koivisto, Matti & Larrañeta, Miguel & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Increasing the resolution of solar and wind time series for energy system modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    13. Vallianos, Charalampos & Candanedo, José & Athienitis, Andreas, 2023. "Application of a large smart thermostat dataset for model calibration and Model Predictive Control implementation in the residential sector," Energy, Elsevier, vol. 278(PA).
    14. Chen, Yuhong & Lyu, Yanfeng & Yang, Xiangdong & Zhang, Xiaohong & Pan, Hengyu & Wu, Jun & Lei, Yongjia & Zhang, Yanzong & Wang, Guiyin & Xu, Min & Luo, Hongbin, 2022. "Performance comparison of urea production using one set of integrated indicators considering energy use, economic cost and emissions’ impacts: A case from China," Energy, Elsevier, vol. 254(PC).
    15. Lozano-Medina, Alexis & Manzano, Luis & Marcos, José D. & Blanco-Marigorta, Ana M., 2019. "Design of a concentrating solar thermal collector installation for a hotel complex in Gran Canaria," Energy, Elsevier, vol. 183(C), pages 803-811.
    16. Bracken, Cameron & Voisin, Nathalie & Burleyson, Casey D. & Campbell, Allison M. & Hou, Z. Jason & Broman, Daniel, 2024. "Standardized benchmark of historical compound wind and solar energy droughts across the Continental United States," Renewable Energy, Elsevier, vol. 220(C).
    17. Craig, Michael & Guerra, Omar J. & Brancucci, Carlo & Pambour, Kwabena Addo & Hodge, Bri-Mathias, 2020. "Valuing intra-day coordination of electric power and natural gas system operations," Energy Policy, Elsevier, vol. 141(C).
    18. Zimmerman, Ryan & Panda, Anurag & Bulović, Vladimir, 2020. "Techno-economic assessment and deployment strategies for vertically-mounted photovoltaic panels," Applied Energy, Elsevier, vol. 276(C).
    19. Sanzana Tabassum & Tanvin Rahman & Ashraf Ul Islam & Sumayya Rahman & Debopriya Roy Dipta & Shidhartho Roy & Naeem Mohammad & Nafiu Nawar & Eklas Hossain, 2021. "Solar Energy in the United States: Development, Challenges and Future Prospects," Energies, MDPI, vol. 14(23), pages 1-65, December.
    20. Baharoon, Dhyia Aidroos & Rahman, Hasimah Abdul & Fadhl, Saeed Obaid, 2016. "Publics׳ knowledge, attitudes and behavioral toward the use of solar energy in Yemen power sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 498-515.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224018590. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.