IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v183y2022icp502-514.html
   My bibliography  Save this article

A design tool for a parabolic trough collector system for industrial process heat based on dynamic simulation

Author

Listed:
  • Ktistis, Panayiotis
  • Agathokleous, Rafaela A.
  • Kalogirou, Soteris A.

Abstract

The industrial sector is one of the biggest oil consumers in Cyprus, corresponding to 20% of the fuel consumption. A parabolic trough collector (PTC) system seems the best option to produce clean thermal energy at higher temperatures than those that can be achieved from the already widely used flat plate collectors on the island. This paper presents a simulation model built to investigate the performance of the first industrial PTC system in Cyprus, installed at the Cyprus biggest soft drinks factory. The simulation model is built in TRNSYS and is validated using data from the real PTC system installed at the factory. The results show a very good fitting between the operating parameters and the power output of the Solar Field (SF), Concrete Thermal Storage System (CTES), and the Steam Generator (SG). The average percentage relative error of the system's contribution to the process is less than 6.32% for the daily steam production and during a week did not exceed 6.45%. The novelty of this study is the development of a design tool that can be used by potential interested industries to identify the suitable system that fits their needs. All data are provided in the form of graphs and allow anyone to use as input data the thermal energy demand and required steam temperature of the industry to retrieve information about the size of a suitable system which satisfies these requirements depending on each case. The payback period for all cases examined varies from 2 to 6 years, depending on the size of the system.

Suggested Citation

  • Ktistis, Panayiotis & Agathokleous, Rafaela A. & Kalogirou, Soteris A., 2022. "A design tool for a parabolic trough collector system for industrial process heat based on dynamic simulation," Renewable Energy, Elsevier, vol. 183(C), pages 502-514.
  • Handle: RePEc:eee:renene:v:183:y:2022:i:c:p:502-514
    DOI: 10.1016/j.renene.2021.11.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121016220
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.11.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El Ghazzani, Badreddine & Martinez Plaza, Diego & Ait El Cadi, Radia & Ihlal, Ahmed & Abnay, Brahim & Bouabid, Khalid, 2017. "Thermal plant based on parabolic trough collectors for industrial process heat generation in Morocco," Renewable Energy, Elsevier, vol. 113(C), pages 1261-1275.
    2. Silva, R. & Pérez, M. & Fernández-Garcia, A., 2013. "Modeling and co-simulation of a parabolic trough solar plant for industrial process heat," Applied Energy, Elsevier, vol. 106(C), pages 287-300.
    3. Kalogirou, Soteris A, 2002. "Parabolic trough collectors for industrial process heat in Cyprus," Energy, Elsevier, vol. 27(9), pages 813-830.
    4. He, Ya-Ling & Mei, Dan-Hua & Tao, Wen-Quan & Yang, Wei-Wei & Liu, Huai-Liang, 2012. "Simulation of the parabolic trough solar energy generation system with Organic Rankine Cycle," Applied Energy, Elsevier, vol. 97(C), pages 630-641.
    5. Cundapí, Roger & Moya, Sara L. & Valenzuela, Loreto, 2017. "Approaches to modelling a solar field for direct generation of industrial steam," Renewable Energy, Elsevier, vol. 103(C), pages 666-681.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, YongXiang & Yan, Jian & Xie, XinYi & Peng, YouDuo & Nie, DuZhong, 2023. "Improving the energy distribution uniformity of solar dish collector system under tracking error using a cavity receiver position adjustment method," Energy, Elsevier, vol. 278(PA).
    2. Vengadesan, Elumalai & Ismail Rumaney, Abdul Rahim & Mitra, Rohan & Harichandan, Sattwik & Senthil, Ramalingam, 2022. "Heat transfer enhancement of a parabolic trough solar collector using a semicircular multitube absorber," Renewable Energy, Elsevier, vol. 196(C), pages 111-124.
    3. Yan, Jian & Peng, YouDuo & Liu, YongXiang, 2023. "Optical performance evaluation of a large solar dish/Stirling power generation system under self-weight load based on optical-mechanical integration method," Energy, Elsevier, vol. 264(C).
    4. Yan, Jian & Peng, YouDuo & Liu, YongXiang, 2023. "Wind load and load-carrying optical performance of a large solar dish/stirling power system with 17.7 m diameter," Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El Ghazzani, Badreddine & Martinez Plaza, Diego & Ait El Cadi, Radia & Ihlal, Ahmed & Abnay, Brahim & Bouabid, Khalid, 2017. "Thermal plant based on parabolic trough collectors for industrial process heat generation in Morocco," Renewable Energy, Elsevier, vol. 113(C), pages 1261-1275.
    2. Lugo, S. & García-Valladares, O. & Best, R. & Hernández, J. & Hernández, F., 2019. "Numerical simulation and experimental validation of an evacuated solar collector heating system with gas boiler backup for industrial process heating in warm climates," Renewable Energy, Elsevier, vol. 139(C), pages 1120-1132.
    3. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    4. Manikandan, G.K. & Iniyan, S. & Goic, Ranko, 2019. "Enhancing the optical and thermal efficiency of a parabolic trough collector – A review," Applied Energy, Elsevier, vol. 235(C), pages 1524-1540.
    5. Pal, Ram Kumar & Kumar, K. Ravi, 2022. "Effect of transient concentrated solar flux profile on the absorber surface for direct steam generation in the parabolic trough solar collector," Renewable Energy, Elsevier, vol. 186(C), pages 226-249.
    6. Yılmaz, İbrahim Halil & Mwesigye, Aggrey, 2018. "Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review," Applied Energy, Elsevier, vol. 225(C), pages 135-174.
    7. Gil, Juan D. & Topa, A. & Álvarez, J.D. & Torres, J.L. & Pérez, M., 2022. "A review from design to control of solar systems for supplying heat in industrial process applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    8. Wisam Abed Kattea Al-Maliki & Hayder Q. A. Khafaji & Hasanain A. Abdul Wahhab & Hussein M. H. Al-Khafaji & Falah Alobaid & Bernd Epple, 2022. "Advances in Process Modelling and Simulation of Parabolic Trough Power Plants: A Review," Energies, MDPI, vol. 15(15), pages 1-15, July.
    9. Sandá, Antonio & Moya, Sara L. & Valenzuela, Loreto, 2019. "Modelling and simulation tools for direct steam generation in parabolic-trough solar collectors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    10. He, Chao & Liu, Chao & Zhou, Mengtong & Xie, Hui & Xu, Xiaoxiao & Wu, Shuangying & Li, Yourong, 2014. "A new selection principle of working fluids for subcritical organic Rankine cycle coupling with different heat sources," Energy, Elsevier, vol. 68(C), pages 283-291.
    11. Yang, S. & Sensoy, T.S. & Ordonez, J.C., 2018. "Dynamic 3D volume element model of a parabolic trough solar collector for simulation and optimization," Applied Energy, Elsevier, vol. 217(C), pages 509-526.
    12. Cioccolanti, Luca & Tascioni, Roberto & Arteconi, Alessia, 2018. "Mathematical modelling of operation modes and performance evaluation of an innovative small-scale concentrated solar organic Rankine cycle plant," Applied Energy, Elsevier, vol. 221(C), pages 464-476.
    13. Borunda, Mónica & Jaramillo, O.A. & Dorantes, R. & Reyes, Alberto, 2016. "Organic Rankine Cycle coupling with a Parabolic Trough Solar Power Plant for cogeneration and industrial processes," Renewable Energy, Elsevier, vol. 86(C), pages 651-663.
    14. Sachajdak, Andrzej & Lappalainen, Jari & Mikkonen, Hannu, 2019. "Dynamic simulation in development of contemporary energy systems – oxy combustion case study," Energy, Elsevier, vol. 181(C), pages 964-973.
    15. Ghazouani, Mokhtar & Bouya, Mohsine & Benaissa, Mohammed, 2020. "Thermo-economic and exergy analysis and optimization of small PTC collectors for solar heat integration in industrial processes," Renewable Energy, Elsevier, vol. 152(C), pages 984-998.
    16. Huang, Zhen & Li, Zeng-Yao & Tao, Wen-Quan, 2017. "Numerical study on combined natural and forced convection in the fully-developed turbulent region for a horizontal circular tube heated by non-uniform heat flux," Applied Energy, Elsevier, vol. 185(P2), pages 2194-2208.
    17. Abdulhamed, Ali Jaber & Adam, Nor Mariah & Ab-Kadir, Mohd Zainal Abidin & Hairuddin, Abdul Aziz, 2018. "Review of solar parabolic-trough collector geometrical and thermal analyses, performance, and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 822-831.
    18. Biencinto, Mario & González, Lourdes & Valenzuela, Loreto, 2016. "A quasi-dynamic simulation model for direct steam generation in parabolic troughs using TRNSYS," Applied Energy, Elsevier, vol. 161(C), pages 133-142.
    19. Liu, Shanshan & Jiao, Wenling & Wang, Chunhua, 2024. "Coupled heat transfer analysis of U-type tube module of LNG ambient air vaporizer under dry conditions," Renewable Energy, Elsevier, vol. 221(C).
    20. Xu, Chengmu & Chen, Zhiping & Li, Ming & Zhang, Peng & Ji, Xu & Luo, Xi & Liu, Jiangtao, 2014. "Research on the compensation of the end loss effect for parabolic trough solar collectors," Applied Energy, Elsevier, vol. 115(C), pages 128-139.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:183:y:2022:i:c:p:502-514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.