IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v231y2018icp1109-1121.html
   My bibliography  Save this article

An optical performance comparison of three concentrating solar power collector designs in linear Fresnel, parabolic trough, and central receiver

Author

Listed:
  • Kincaid, Nicholas
  • Mungas, Greg
  • Kramer, Nicholas
  • Wagner, Michael
  • Zhu, Guangdong

Abstract

The optical performance of a concentrating solar power (CSP) collector is critical to the overall efficiency of the system. This study presents a detailed optical comparison between three representative CSP collector designs including linear Fresnel, parabolic trough, and central-receiver technologies. Optical models are implemented in SolTrace, which is ray-tracing software developed at the National Renewable Energy Laboratory. The ray-tracing algorithm is used to calculate a collector’s design-point performance as well as its incidence-angle modifiers to evaluate the collector performance at any sun position during a typical meteorological year. The efficiency over a one-year period is then analyzed based on ray-tracing results. Using China Lake (California) as an example, the annual optical efficiency is 60% for the selected parabolic trough collector, 52% for the selected central-receiver technology, and 40% for the selected linear Fresnel collector. The parabolic trough has the highest optical performance among all. The selected central-receiver technology provides the most consistent seasonal production profile over the course of the year due to its two-axis-tracking ability but would suffer most from the increasing solar collector optical error. It is also shown that a dramatic cost reduction is required for the selected linear Fresnel technology to be competitive in the future energy market. Sensitivity of three CSP technologies to the deployment locations and the overall optical-error magnitude is also examined through annual performance analysis. The results will provide insights into a better understanding on inherent technical aspects of different CSP technologies.

Suggested Citation

  • Kincaid, Nicholas & Mungas, Greg & Kramer, Nicholas & Wagner, Michael & Zhu, Guangdong, 2018. "An optical performance comparison of three concentrating solar power collector designs in linear Fresnel, parabolic trough, and central receiver," Applied Energy, Elsevier, vol. 231(C), pages 1109-1121.
  • Handle: RePEc:eee:appene:v:231:y:2018:i:c:p:1109-1121
    DOI: 10.1016/j.apenergy.2018.09.153
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918314648
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.09.153?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmadi, Gholamreza & Toghraie, Davood & Akbari, Omid Ali, 2017. "Solar parallel feed water heating repowering of a steam power plant: A case study in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 474-485.
    2. Qiu, Yu & He, Ya-Ling & Cheng, Ze-Dong & Wang, Kun, 2015. "Study on optical and thermal performance of a linear Fresnel solar reflector using molten salt as HTF with MCRT and FVM methods," Applied Energy, Elsevier, vol. 146(C), pages 162-173.
    3. Zhu, Guangdong & Neises, Ty & Turchi, Craig & Bedilion, Robin, 2015. "Thermodynamic evaluation of solar integration into a natural gas combined cycle power plant," Renewable Energy, Elsevier, vol. 74(C), pages 815-824.
    4. Fan, Man & You, Shijun & Xia, Junbao & Zheng, Wandong & Zhang, Huan & Liang, Hongbo & Li, Xianli & Li, Bojia, 2018. "An optimized Monte Carlo ray tracing optical simulation model and its applications to line-focus concentrating solar collectors," Applied Energy, Elsevier, vol. 225(C), pages 769-781.
    5. Abbas, R. & Martínez-Val, J.M., 2017. "A comprehensive optical characterization of linear Fresnel collectors by means of an analytic study," Applied Energy, Elsevier, vol. 185(P2), pages 1136-1151.
    6. McTigue, Joshua D. & Castro, Jose & Mungas, Greg & Kramer, Nick & King, John & Turchi, Craig & Zhu, Guangdong, 2018. "Hybridizing a geothermal power plant with concentrating solar power and thermal storage to increase power generation and dispatchability," Applied Energy, Elsevier, vol. 228(C), pages 1837-1852.
    7. Vignarooban, K. & Xu, Xinhai & Arvay, A. & Hsu, K. & Kannan, A.M., 2015. "Heat transfer fluids for concentrating solar power systems – A review," Applied Energy, Elsevier, vol. 146(C), pages 383-396.
    8. Yılmaz, İbrahim Halil & Mwesigye, Aggrey, 2018. "Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review," Applied Energy, Elsevier, vol. 225(C), pages 135-174.
    9. Ho, Clifford K. & Iverson, Brian D., 2014. "Review of high-temperature central receiver designs for concentrating solar power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 835-846.
    10. Sait, Hani H. & Martinez-Val, Jose M. & Abbas, Ruben & Munoz-Anton, Javier, 2015. "Fresnel-based modular solar fields for performance/cost optimization in solar thermal power plants: A comparison with parabolic trough collectors," Applied Energy, Elsevier, vol. 141(C), pages 175-189.
    11. Wang, Fu & Zhao, Jun & Li, Hailong & Deng, Shuai & Yan, Jinyue, 2017. "Preliminary experimental study of post-combustion carbon capture integrated with solar thermal collectors," Applied Energy, Elsevier, vol. 185(P2), pages 1471-1480.
    12. Du, Ershun & Zhang, Ning & Hodge, Bri-Mathias & Kang, Chongqing & Kroposki, Benjamin & Xia, Qing, 2018. "Economic justification of concentrating solar power in high renewable energy penetrated power systems," Applied Energy, Elsevier, vol. 222(C), pages 649-661.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Awan, Ahmed Bilal & Zubair, Muhammad & Chandra Mouli, Kotturu V.V., 2020. "Design, optimization and performance comparison of solar tower and photovoltaic power plants," Energy, Elsevier, vol. 199(C).
    2. Hertel, Julian D. & Canals, Vincent & Pujol-Nadal, Ramón, 2020. "On-site optical characterization of large-scale solar collectors through ray-tracing optimization," Applied Energy, Elsevier, vol. 262(C).
    3. Machado, Diogo Ortiz & Chicaiza, William D. & Escaño, Juan M. & Gallego, Antonio J. & de Andrade, Gustavo A. & Normey-Rico, Julio E. & Bordons, Carlos & Camacho, Eduardo F., 2023. "Digital twin of a Fresnel solar collector for solar cooling," Applied Energy, Elsevier, vol. 339(C).
    4. Francisco José Sepúlveda & María Teresa Miranda & Irene Montero & José Ignacio Arranz & Francisco Javier Lozano & Manuel Matamoros & Paloma Rodríguez, 2019. "Analysis of Potential Use of Linear Fresnel Collector for Direct Steam Generation in Industries of the Southwest of Europe," Energies, MDPI, vol. 12(21), pages 1-15, October.
    5. Shupeng Zheng & Zecheng Luo & Jiwu Wu & Lunyuan Zhang & Yijian He, 2024. "Study on Multivariable Dynamic Matrix Control for a Novel Solar Hybrid STIGT System," Energies, MDPI, vol. 17(6), pages 1-27, March.
    6. Roberto Grena, 2024. "Geometrical Aspects of the Optics of Linear Fresnel Concentrators: A Review," Energies, MDPI, vol. 17(14), pages 1-39, July.
    7. Alireza Rafiei & Reyhaneh Loni & Gholamhassan Najafi & Talal Yusaf, 2020. "Study of PTC System with Rectangular Cavity Receiver with Different Receiver Tube Shapes Using Oil, Water and Air," Energies, MDPI, vol. 13(8), pages 1-24, April.
    8. Barbón, A. & Fernández-Rubiera, J.A. & Martínez-Valledor, L. & Pérez-Fernández, A. & Bayón, L., 2021. "Design and construction of a solar tracking system for small-scale linear Fresnel reflector with three movements," Applied Energy, Elsevier, vol. 285(C).
    9. Memme, Samuele & Fossa, Marco, 2024. "A novel approach for incidence angle modifier calculation of arbitrarily oriented linear Fresnel collectors: Theory, simulations and case studies," Renewable Energy, Elsevier, vol. 222(C).
    10. Memme, Samuele & Fossa, Marco, 2023. "Ray tracing analysis of linear Fresnel concentrators and the effect of plant azimuth on their optical efficiency," Renewable Energy, Elsevier, vol. 216(C).
    11. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    12. Sarvar-Ardeh, Sajjad & Rashidi, Saman & Rafee, Roohollah & Li, Guiqiang, 2024. "Recent advances in the applications of solar-driven co-generation systems for heat, freshwater and power," Renewable Energy, Elsevier, vol. 225(C).
    13. Green, Sidney & McLennan, John & Panja, Palash & Kitz, Kevin & Allis, Richard & Moore, Joseph, 2021. "Geothermal battery energy storage," Renewable Energy, Elsevier, vol. 164(C), pages 777-790.
    14. Santosh, R. & Kumaresan, G. & Pon Pavithiran, C.K. & Mathu, P. & Velraj, R., 2023. "Effect of geometric variation and solar flux distribution on performance enhancement of absorber tube thermal characteristics for compound parabolic collectors," Renewable Energy, Elsevier, vol. 210(C), pages 671-686.
    15. Santos, Andre V. & Canavarro, Diogo & Collares-Pereira, Manuel, 2021. "The gap angle as a design criterion to determine the position of linear Fresnel primary mirrors," Renewable Energy, Elsevier, vol. 163(C), pages 1397-1407.
    16. Omar Behar & Daniel Sbarbaro & Luis Morán, 2020. "A Practical Methodology for the Design and Cost Estimation of Solar Tower Power Plants," Sustainability, MDPI, vol. 12(20), pages 1-16, October.
    17. Cesar Lucio & Omar Behar & Bassam Dally, 2023. "Techno-Economic Assessment of CPVT Spectral Splitting Technology: A Case Study on Saudi Arabia," Energies, MDPI, vol. 16(14), pages 1-23, July.
    18. Beltagy, Hani, 2021. "The effect of glass on the receiver and the use of two absorber tubes on optical performance of linear fresnel solar concentrators," Energy, Elsevier, vol. 224(C).
    19. Taramona, Sebastián & González-Gómez, Pedro Ángel & Briongos, Javier Villa & Gómez-Hernández, Jesús, 2022. "Designing a flat beam-down linear Fresnel reflector," Renewable Energy, Elsevier, vol. 187(C), pages 484-499.
    20. Stanek, Bartosz & Grzywnowicz, Krzysztof & Bartela, Łukasz & Węcel, Daniel & Uchman, Wojciech, 2021. "A system analysis of hybrid solar PTC-CPV absorber operation," Renewable Energy, Elsevier, vol. 174(C), pages 635-653.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hack, Madeline & Zhu, Guangdong & Wendelin, Tim, 2017. "Evaluation and comparison of an adaptive method technique for improved performance of linear Fresnel secondary designs," Applied Energy, Elsevier, vol. 208(C), pages 1441-1451.
    2. Abbas, R. & Sebastián, A. & Montes, M.J. & Valdés, M., 2018. "Optical features of linear Fresnel collectors with different secondary reflector technologies," Applied Energy, Elsevier, vol. 232(C), pages 386-397.
    3. Sebastián, Andrés & Abbas, Rubén & Valdés, Manuel & Casanova, Jesús, 2018. "Innovative thermal storage strategies for Fresnel-based concentrating solar plants with East-West orientation," Applied Energy, Elsevier, vol. 230(C), pages 983-995.
    4. Pulido-Iparraguirre, Diego & Valenzuela, Loreto & Serrano-Aguilera, Juan-José & Fernández-García, Aránzazu, 2019. "Optimized design of a Linear Fresnel reflector for solar process heat applications," Renewable Energy, Elsevier, vol. 131(C), pages 1089-1106.
    5. Wang, Kun & Li, Ming-Jia & Guo, Jia-Qi & Li, Peiwen & Liu, Zhan-Bin, 2018. "A systematic comparison of different S-CO2 Brayton cycle layouts based on multi-objective optimization for applications in solar power tower plants," Applied Energy, Elsevier, vol. 212(C), pages 109-121.
    6. Hachicha, Ahmed Amine & Yousef, Bashria A.A. & Said, Zafar & Rodríguez, Ivette, 2019. "A review study on the modeling of high-temperature solar thermal collector systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 280-298.
    7. Bame, Aaron T. & Furner, Joseph & Hoag, Ian & Mohammadi, Kasra & Powell, Kody & Iverson, Brian D., 2022. "Optimization of solar-coal hybridization for low solar augmentation," Applied Energy, Elsevier, vol. 319(C).
    8. Zheng, Zhang-Jing & Li, Ming-Jia & He, Ya-Ling, 2017. "Thermal analysis of solar central receiver tube with porous inserts and non-uniform heat flux," Applied Energy, Elsevier, vol. 185(P2), pages 1152-1161.
    9. Abbas, R. & Martínez-Val, J.M., 2017. "A comprehensive optical characterization of linear Fresnel collectors by means of an analytic study," Applied Energy, Elsevier, vol. 185(P2), pages 1136-1151.
    10. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    11. Mena, R. & Escobar, R. & Lorca, Á. & Negrete-Pincetic, M. & Olivares, D., 2019. "The impact of concentrated solar power in electric power systems: A Chilean case study," Applied Energy, Elsevier, vol. 235(C), pages 258-283.
    12. Memme, Samuele & Fossa, Marco, 2023. "Ray tracing analysis of linear Fresnel concentrators and the effect of plant azimuth on their optical efficiency," Renewable Energy, Elsevier, vol. 216(C).
    13. Conroy, Tim & Collins, Maurice N. & Grimes, Ronan, 2020. "A review of steady-state thermal and mechanical modelling on tubular solar receivers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    14. Boukelia, T.E. & Arslan, O. & Djimli, S. & Kabar, Y., 2023. "ORC fluids selection for a bottoming binary geothermal power plant integrated with a CSP plant," Energy, Elsevier, vol. 265(C).
    15. Bellos, Evangelos & Tzivanidis, Christos, 2018. "Investigation of a star flow insert in a parabolic trough solar collector," Applied Energy, Elsevier, vol. 224(C), pages 86-102.
    16. Wang, Hai & Huang, Jin & Song, Mengjie & Yan, Jian, 2019. "Effects of receiver parameters on the optical performance of a fixed-focus Fresnel lens solar concentrator/cavity receiver system in solar cooker," Applied Energy, Elsevier, vol. 237(C), pages 70-82.
    17. Wang, Qiliang & Yang, Honglun & Zhong, Shuai & Huang, Yihang & Hu, Mingke & Cao, Jingyu & Pei, Gang & Yang, Hongxing, 2020. "Comprehensive experimental testing and analysis on parabolic trough solar receiver integrated with radiation shield," Applied Energy, Elsevier, vol. 268(C).
    18. Coronas, Sergio & Martín, Helena & de la Hoz, Jordi & García de Vicuña, Luis & Castilla, Miguel, 2021. "MONTE-CARLO probabilistic valuation of concentrated solar power systems in Spain under the 2014 retroactive regulatory framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    19. Qiu, Yu & Li, Ming-Jia & Wang, Kun & Liu, Zhan-Bin & Xue, Xiao-Dai, 2017. "Aiming strategy optimization for uniform flux distribution in the receiver of a linear Fresnel solar reflector using a multi-objective genetic algorithm," Applied Energy, Elsevier, vol. 205(C), pages 1394-1407.
    20. Wang, Kun & He, Ya-Ling & Xue, Xiao-Dai & Du, Bao-Cun, 2017. "Multi-objective optimization of the aiming strategy for the solar power tower with a cavity receiver by using the non-dominated sorting genetic algorithm," Applied Energy, Elsevier, vol. 205(C), pages 399-416.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:231:y:2018:i:c:p:1109-1121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.