IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v280y2020i2p639-655.html
   My bibliography  Save this article

Optimal bidding of a virtual power plant on the Spanish day-ahead and intraday market for electricity

Author

Listed:
  • Wozabal, David
  • Rameseder, Gunther

Abstract

We develop a multi-stage stochastic programming approach to optimize the bidding strategy of a virtual power plant (VPP) operating on the Spanish spot market for electricity. The VPP markets electricity produced in the wind parks it manages on the day-ahead market and on six staggered auction-based intraday markets. Uncertainty enters the problem via stochastic electricity prices as well as uncertain wind energy production. We set up the problem of bidding for one day of operation as a Markov decision process (MDP) that is solved using a variant of the stochastic dual dynamic programming algorithm. We conduct an extensive out-of-sample comparison demonstrating that the optimal policy obtained by the stochastic program clearly outperforms deterministic planning, a pure day-ahead strategy, a benchmark that only uses the day-ahead market and the first intraday market, as well as a proprietary stochastic programming approach developed in the industry. Furthermore, we study the effect of risk aversion as modeled by the nested Conditional Value-at-Risk as well as the impact of changes in various problem parameters.

Suggested Citation

  • Wozabal, David & Rameseder, Gunther, 2020. "Optimal bidding of a virtual power plant on the Spanish day-ahead and intraday market for electricity," European Journal of Operational Research, Elsevier, vol. 280(2), pages 639-655.
  • Handle: RePEc:eee:ejores:v:280:y:2020:i:2:p:639-655
    DOI: 10.1016/j.ejor.2019.07.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719305867
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.07.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:280:y:2020:i:2:p:639-655. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.