IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v282y2023ics0360544223022806.html
   My bibliography  Save this article

Enhanced gas production from low-permeability hydrate reservoirs based on embedded discrete fracture models: Influence of branch parameters

Author

Listed:
  • Guo, Yang
  • Li, Shuxia
  • Qin, Xuwen
  • Lu, Cheng
  • Wu, Didi
  • Liu, Lu
  • Zhang, Ningtao

Abstract

The low permeability of marine hydrate reservoirs makes it difficult for trail results to meet the demand for exploitation. Hydraulic fracturing and multi-branch wells are the primary methods for enhancing productivity. This study proposed a new production enhancement method of multi-branch wells combined with multi-stage fracturing (MWMF) based on the embedded discrete fracture model (EDFM). By simulation of the Shenhu area, the multi-physical field evolution of the MWMF production process was first revealed, followed by the systematic analysis of the MWMF production enhancement effect with branch parameters. Results indicated that the cumulative gas production of MWMF increased by 327% compared with only horizontal wells. The production of four-branch wells exhibited a 7% reduction compared to horizontal wells using the MWMF method, suggesting increased branch numbers inhibit production. Increasing branch length was positively correlated with enhanced production. Notably, the influence of branch length on gas production became more pronounced as the number of branches increased. The interface of the three-phase layer (TPL) and hydrate-bearing layer (HBL) was the most suitable location for branch well placement. This novel study provides valuable insights into new applications of the MWMF method in developing low-permeability hydrate reservoirs.

Suggested Citation

  • Guo, Yang & Li, Shuxia & Qin, Xuwen & Lu, Cheng & Wu, Didi & Liu, Lu & Zhang, Ningtao, 2023. "Enhanced gas production from low-permeability hydrate reservoirs based on embedded discrete fracture models: Influence of branch parameters," Energy, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223022806
    DOI: 10.1016/j.energy.2023.128886
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223022806
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128886?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qin, Xuwen & Liang, Qianyong & Ye, Jianliang & Yang, Lin & Qiu, Haijun & Xie, Wenwei & Liang, Jinqiang & Lu, Jin'an & Lu, Cheng & Lu, Hailong & Ma, Baojin & Kuang, Zenggui & Wei, Jiangong & Lu, Hongfe, 2020. "The response of temperature and pressure of hydrate reservoirs in the first gas hydrate production test in South China Sea," Applied Energy, Elsevier, vol. 278(C).
    2. Zhang, Panpan & Tian, Shouceng & Zhang, Yiqun & Li, Gensheng & Zhang, Wenhong & Khan, Waleed Ali & Ma, Luyao, 2021. "Numerical simulation of gas recovery from natural gas hydrate using multi-branch wells: A three-dimensional model," Energy, Elsevier, vol. 220(C).
    3. Jin, Guangrong & Su, Zheng & Zhai, Haizhen & Feng, Chuangji & Liu, Jie & Peng, Yingyu & Liu, Lihua, 2023. "Enhancement of gas production from hydrate reservoir using a novel deployment of multilateral horizontal well," Energy, Elsevier, vol. 270(C).
    4. Mao, Peixiao & Wu, Nengyou & Wan, Yizhao & Hu, Gaowei & Wang, Xingxing, 2023. "Optimization of a multi-fractured multilateral well network in advantageous structural positions of ultralow-permeability hydrate reservoirs," Energy, Elsevier, vol. 268(C).
    5. Xu, Jianchun & Qin, Huating & Li, Hangyu & Lu, Cheng & Li, Shuxia & Wu, Didi, 2023. "Enhanced gas production efficiency of class 1,2,3 hydrate reservoirs using hydraulic fracturing technique," Energy, Elsevier, vol. 263(PE).
    6. Li, Rui & Cao, Bo-Jian & Chen, Hong-Nan & Wang, Xiao-Hui & Sun, Yi-Fei & Sun, Chang-Yu & Liu, Bei & Pang, Wei-Xin & Li, Qing-Ping & Chen, Guang-Jin, 2022. "Experimental study on the dual-gas co-production from hydrate deposit and its underlying gas reservoir," Energy, Elsevier, vol. 258(C).
    7. Chen Chen & Lin Yang & Rui Jia & Youhong Sun & Wei Guo & Yong Chen & Xitong Li, 2017. "Simulation Study on the Effect of Fracturing Technology on the Production Efficiency of Natural Gas Hydrate," Energies, MDPI, vol. 10(8), pages 1-16, August.
    8. E. Dendy Sloan, 2003. "Fundamental principles and applications of natural gas hydrates," Nature, Nature, vol. 426(6964), pages 353-359, November.
    9. Yu, Tao & Guan, Guoqing & Abudula, Abuliti & Wang, Dayong & Song, Yongchen, 2021. "Numerical evaluation of free gas accumulation behavior in a reservoir during methane hydrate production using a multiple-well system," Energy, Elsevier, vol. 218(C).
    10. Li, Shuxia & Wu, Didi & Wang, Xiaopu & Hao, Yongmao, 2021. "Enhanced gas production from marine hydrate reservoirs by hydraulic fracturing assisted with sealing burdens," Energy, Elsevier, vol. 232(C).
    11. Chong, Zheng Rong & Yang, She Hern Bryan & Babu, Ponnivalavan & Linga, Praveen & Li, Xiao-Sen, 2016. "Review of natural gas hydrates as an energy resource: Prospects and challenges," Applied Energy, Elsevier, vol. 162(C), pages 1633-1652.
    12. Yu, Tao & Guan, Guoqing & Wang, Dayong & Song, Yongchen & Abudula, Abuliti, 2021. "Numerical investigation on the long-term gas production behavior at the 2017 Shenhu methane hydrate production site," Applied Energy, Elsevier, vol. 285(C).
    13. Liu, Yongge & Li, Guo & Chen, Jing & Bai, Yajie & Hou, Jian & Xu, Hongzhi & Zhao, Ermeng & Chen, Zhangxin & He, Jiayuan & Zhang, Le & Cen, Xueqi & Chuvilin, Evgeny, 2023. "Numerical simulation of hydraulic fracturing-assisted depressurization development in hydrate bearing layers based on discrete fracture models," Energy, Elsevier, vol. 263(PE).
    14. Yin, Faling & Gao, Yonghai & Chen, Ye & Sun, Baojiang & Li, Shaoqiang & Zhao, Danshi, 2022. "Numerical investigation on the long-term production behavior of horizontal well at the gas hydrate production site in South China Sea," Applied Energy, Elsevier, vol. 311(C).
    15. Jin, Guangrong & Peng, Yingyu & Liu, Lihua & Su, Zheng & Liu, Jie & Li, Tingting & Wu, Daidai, 2022. "Enhancement of gas production from low-permeability hydrate by radially branched horizontal well: Shenhu Area, South China Sea," Energy, Elsevier, vol. 253(C).
    16. Mao, Peixiao & Wan, Yizhao & Sun, Jiaxin & Li, Yanlong & Hu, Gaowei & Ning, Fulong & Wu, Nengyou, 2021. "Numerical study of gas production from fine-grained hydrate reservoirs using a multilateral horizontal well system," Applied Energy, Elsevier, vol. 301(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianchun Xu & Yan Liu & Wei Sun, 2024. "Production Simulation of Stimulated Reservoir Volume in Gas Hydrate Formation with Three-Dimensional Embedded Discrete Fracture Model," Sustainability, MDPI, vol. 16(22), pages 1-35, November.
    2. Ye, Hongyu & Chen, Daoyi & Yao, Yuanxin & Wu, Xuezhen & Li, Dayong & Zi, Mucong, 2024. "Exploration of production capacity-geomechanical evaluation and CO2 reinjection repair strategy in natural gas hydrate production by multilateral horizontal wells," Energy, Elsevier, vol. 296(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Xinxin & Sun, Jiaxin & Qin, Fanfan & Ning, Fulong & Mao, Peixiao & Gu, Yuhang & Li, Yanlong & Zhang, Heen & Yu, Yanjiang & Wu, Nengyou, 2023. "Numerical analysis on gas production performance by using a multilateral well system at the first offshore hydrate production test site in the Shenhu area," Energy, Elsevier, vol. 270(C).
    2. Zhang, Yiqun & Zhang, Panpan & Hui, Chengyu & Tian, Shouceng & Zhang, Bo, 2023. "Numerical analysis of the geomechanical responses during natural gas hydrate production by multilateral wells," Energy, Elsevier, vol. 269(C).
    3. Guo, Yang & Li, Shuxia & Sun, Hao & Wu, Didi & Liu, Lu & Zhang, Ningtao & Qin, Xuwen & Lu, Cheng, 2024. "Enhancing gas production and CO2 sequestration from marine hydrate reservoirs through optimized CO2 hydrate cap," Energy, Elsevier, vol. 303(C).
    4. Ye, Hongyu & Chen, Daoyi & Yao, Yuanxin & Wu, Xuezhen & Li, Dayong & Zi, Mucong, 2024. "Exploration of production capacity-geomechanical evaluation and CO2 reinjection repair strategy in natural gas hydrate production by multilateral horizontal wells," Energy, Elsevier, vol. 296(C).
    5. Mao, Peixiao & Wu, Nengyou & Wan, Yizhao & Hu, Gaowei & Wang, Xingxing, 2023. "Optimization of a multi-fractured multilateral well network in advantageous structural positions of ultralow-permeability hydrate reservoirs," Energy, Elsevier, vol. 268(C).
    6. Dong, Lin & Li, Yanlong & Wu, Nengyou & Wan, Yizhao & Liao, Hualin & Wang, Huajian & Zhang, Yajuan & Ji, Yunkai & Hu, Gaowei & Leonenko, Yuri, 2023. "Numerical simulation of gas extraction performance from hydrate reservoirs using double-well systems," Energy, Elsevier, vol. 265(C).
    7. Hui, Chengyu & Zhang, Yiqun & Wu, Xiaoya & Zhang, Panpan & Li, Gensheng & Lu, Jingsheng & Zhang, Bo, 2024. "Numerical analysis of the production behaviors and geomechanical responses during natural gas hydrate production by vertical wells fracturing," Energy, Elsevier, vol. 292(C).
    8. Guo, Wei & Zhong, Xiuping & Chen, Chen & Zhang, Pengyu & Liu, Zhao & Wang, Yuan & Tu, Guigang, 2024. "Stimulation effect of network fracturing combined with sealing boundaries on the depressurization development of hydrate reservoir in China's offshore test site," Energy, Elsevier, vol. 302(C).
    9. Guan, Dawei & Qu, Aoxing & Gao, Peng & Fan, Qi & Li, Qingping & Zhang, Lunxiang & Zhao, Jiafei & Song, Yongchen & Yang, Lei, 2023. "Improved temperature distribution upon varying gas producing channel in gas hydrate reservoir: Insights from the Joule-Thomson effect," Applied Energy, Elsevier, vol. 348(C).
    10. Jianchun Xu & Yan Liu & Wei Sun, 2024. "Production Simulation of Stimulated Reservoir Volume in Gas Hydrate Formation with Three-Dimensional Embedded Discrete Fracture Model," Sustainability, MDPI, vol. 16(22), pages 1-35, November.
    11. Tan, Lin & Liu, Fang & Dai, Sheng & Yao, Junlan, 2024. "A bibliometric analysis of two-decade research efforts in turning natural gas hydrates into energy," Energy, Elsevier, vol. 299(C).
    12. Zhang, Panpan & Zhang, Yiqun & Zhang, Wenhong & Tian, Shouceng, 2022. "Numerical simulation of gas production from natural gas hydrate deposits with multi-branch wells: Influence of reservoir properties," Energy, Elsevier, vol. 238(PA).
    13. Tinghui Wan & Miao Yu & Hongfeng Lu & Zongheng Chen & Zhanzhao Li & Lieyu Tian & Keliang Li & Ning Huang & Jingli Wang, 2024. "Numerical Simulation of Vertical Well Depressurization with Different Deployments of Radial Laterals in Class 1-Type Hydrate Reservoir," Energies, MDPI, vol. 17(5), pages 1-19, February.
    14. Yu, Tao & Guan, Guoqing & Wang, Dayong & Song, Yongchen & Abudula, Abuliti, 2021. "Numerical investigation on the long-term gas production behavior at the 2017 Shenhu methane hydrate production site," Applied Energy, Elsevier, vol. 285(C).
    15. Li, Xiao-Yan & Wang, Yi & Li, Xiao-Sen & Zhou, Shi-Dong & Liu, Yang & Lv, Xiao-Fang, 2024. "Study on the production of gas hydrates and underlying free gas by horizontal well under different directions of hydraulic fracturing," Energy, Elsevier, vol. 290(C).
    16. Ning, Fulong & Chen, Qiang & Sun, Jiaxin & Wu, Xiang & Cui, Guodong & Mao, Peixiao & Li, Yanlong & Liu, Tianle & Jiang, Guosheng & Wu, Nengyou, 2022. "Enhanced gas production of silty clay hydrate reservoirs using multilateral wells and reservoir reformation techniques: Numerical simulations," Energy, Elsevier, vol. 254(PA).
    17. Zhao, Ermeng & Hou, Jian & Ji, Yunkai & Liu, Yongge & Bai, Yajie, 2021. "Enhancing gas production from Class II hydrate deposits through depressurization combined with low-frequency electric heating under dual horizontal wells," Energy, Elsevier, vol. 233(C).
    18. Cheng, Fanbao & Sun, Xiang & Li, Yanghui & Ju, Xin & Yang, Yaobin & Liu, Xuanji & Liu, Weiguo & Yang, Mingjun & Song, Yongchen, 2023. "Numerical analysis of coupled thermal-hydro-chemo-mechanical (THCM) behavior to joint production of marine gas hydrate and shallow gas," Energy, Elsevier, vol. 281(C).
    19. Xue, Kunpeng & Liu, Yu & Yu, Tao & Yang, Lei & Zhao, Jiafei & Song, Yongchen, 2023. "Numerical simulation of gas hydrate production in shenhu area using depressurization: The effect of reservoir permeability heterogeneity," Energy, Elsevier, vol. 271(C).
    20. Wei Sun & Guiwang Li & Huating Qin & Shuxia Li & Jianchun Xu, 2023. "Enhanced Gas Production from Class II Gas Hydrate Reservoirs by the Multistage Fractured Horizontal Well," Energies, MDPI, vol. 16(8), pages 1-24, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223022806. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.