IDEAS home Printed from https://ideas.repec.org/a/aen/journl/ej40-2-huang.html
   My bibliography  Save this article

Is Abundant Natural Gas a Bridge to a Low-carbon Future or a Dead-end?

Author

Listed:
  • Kenneth Gillingham and Pei Huang

Abstract

A fierce debate rages on whether abundant natural gas is a bridge to a low-carbon future or a hindrance to long-term decarbonization. This paper uses a detailed energy-economic market equilibrium model to study the effects of an upper bound case of natural gas availability. We show that a market-driven abundant natural gas supply can provide substantial reductions in air pollution but does not considerably reduce CO2 emissions in the longer-term, especially relative to a moderate carbon price. However, we quantify large welfare benefits from abundant natural gas. The spatial disaggregation of our results allows for a clear picture of the distributional impacts of abundant natural gas under different carbon price scenarios, illustrating welfare gains by most regions regardless of whether there is carbon pricing, but substantial heterogeneity in the welfare gains.

Suggested Citation

  • Kenneth Gillingham and Pei Huang, 2019. "Is Abundant Natural Gas a Bridge to a Low-carbon Future or a Dead-end?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
  • Handle: RePEc:aen:journl:ej40-2-huang
    as

    Download full text from publisher

    File URL: http://www.iaee.org/en/publications/ejarticle.aspx?id=3325
    Download Restriction: Access to full text is restricted to IAEE members and subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lawrence Cathles & Larry Brown & Milton Taam & Andrew Hunter, 2012. "A commentary on “The greenhouse-gas footprint of natural gas in shale formations” by R.W. Howarth, R. Santoro, and Anthony Ingraffea," Climatic Change, Springer, vol. 113(2), pages 525-535, July.
    2. Lion Hirth, 2015. "The Optimal Share of Variable Renewables: How the Variability of Wind and Solar Power affects their Welfare-optimal Deployment," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gillingham, Kenneth & Huang, Pei, 2021. "Racial disparities in the health effects from air pollution: Evidence from ports," ZEW Discussion Papers 21-058, ZEW - Leibniz Centre for European Economic Research.
    2. Brown, Marilyn A. & Li, Yufei & Soni, Anmol, 2020. "Are all jobs created equal? Regional employment impacts of a U.S. carbon tax," Applied Energy, Elsevier, vol. 262(C).
    3. Kenneth Gillingham & Marten Ovaere & Stephanie Weber, 2021. "Carbon Policy and the Emissions Implications of Electric Vehicles," CESifo Working Paper Series 8974, CESifo.
    4. Filipe M. Quintino & Edgar C. Fernandes, 2021. "Numerical Investigation of the Impact of H 2 Enrichment on Lean Biogas/Air Flames: An Analytical Modelling Approach," Energies, MDPI, vol. 14(2), pages 1-17, January.
    5. Kaixin Huang & Matthew J. Eckelman, 2022. "Appending material flows to the National Energy Modeling System (NEMS) for projecting the physical economy of the United States," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 294-308, February.
    6. Woollacott, Jared, 2020. "A bridge too far? The role of natural gas electricity generation in US climate policy," Energy Policy, Elsevier, vol. 147(C).
    7. Guo, Jiaqi & Long, Shaobo & Luo, Weijie, 2022. "Nonlinear effects of climate policy uncertainty and financial speculation on the global prices of oil and gas," International Review of Financial Analysis, Elsevier, vol. 83(C).
    8. John E. T. Bistline & David T. Young, 2022. "The role of natural gas in reaching net-zero emissions in the electric sector," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Raymond Li & Chi-Keung Woo & Asher Tishler & Jay Zarnikau, 2022. "Price Responsiveness of Residential Demand for Natural Gas in the United States," Energies, MDPI, vol. 15(12), pages 1-22, June.
    10. Li, Raymond & Woo, Chi-Keung & Tishler, Asher & Zarnikau, Jay, 2022. "How price responsive is industrial demand for natural gas in the United States?," Utilities Policy, Elsevier, vol. 74(C).
    11. Li, Raymond & Woo, Chi-Keung & Tishler, Asher & Zarnikau, Jay, 2022. "Price responsiveness of commercial demand for natural gas in the US," Energy, Elsevier, vol. 256(C).
    12. Wiktor Hebda, 2021. "The North-South Gas Corridor in the Context of Poland’s Gas Transmission System—A Perfect Opportunity to Diversify Gas Resources," Energies, MDPI, vol. 14(21), pages 1-21, November.
    13. Paul Wolfram & Stephanie Weber & Kenneth Gillingham & Edgar G. Hertwich, 2021. "Pricing indirect emissions accelerates low—carbon transition of US light vehicle sector," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    14. Christa D. Court & Randall W. Jackson & Amanda J. Harker Steele & Gavin Pickenpaugh & Peter Jarosi & Justin Adder & Charles Zelek, 2022. "Extending Macroeconomic Impacts Forecasting for NEMS," The Energy Journal, , vol. 43(4), pages 251-272, May.
    15. Prest, Brian C., 2020. "Supply-Side Reforms to Oil and Gas Production on Federal Lands: Modeling the Implications for Climate Emissions, Revenues, and Production Shifts," RFF Working Paper Series 20-16, Resources for the Future.
    16. Çalcı, Baturay & Leibowicz, Benjamin D. & Bard, Jonathan F. & Jayadev, Gopika G., 2024. "A bilevel approach to multi-period natural gas pricing and investment in gas-consuming infrastructure," Energy, Elsevier, vol. 303(C).
    17. Cisneros-Pineda, Alfredo & Aadland, David & Tschirhart, John, 2020. "Impacts of cattle, hunting, and natural gas development in a rangeland ecosystem," Ecological Modelling, Elsevier, vol. 431(C).
    18. Grzegorz Zych & Jakub Bronicki & Marzena Czarnecka & Grzegorz Kinelski & Jacek Kamiński, 2023. "The Cost of Using Gas as a Transition Fuel in the Transition to Low-Carbon Energy: The Case Study of Poland and Selected European Countries," Energies, MDPI, vol. 16(2), pages 1-13, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peters, Jeffrey C., 2017. "Natural gas and spillover from the US Clean Power Plan into the Paris Agreement," Energy Policy, Elsevier, vol. 106(C), pages 41-47.
    2. Gerbaulet, Clemens & von Hirschhausen, Christian & Kemfert, Claudia & Lorenz, Casimir & Oei, Pao-Yu, 2019. "European electricity sector decarbonization under different levels of foresight," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 141, pages 973-987.
    3. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    4. Thao Pham & Killian Lemoine, 2020. "Impacts of subsidized renewable electricity generation on spot market prices in Germany : Evidence from a GARCH model with panel data," Working Papers hal-02568268, HAL.
    5. Goodarzi, Shadi & Perera, H. Niles & Bunn, Derek, 2019. "The impact of renewable energy forecast errors on imbalance volumes and electricity spot prices," Energy Policy, Elsevier, vol. 134(C).
    6. Goutte, Stéphane & Vassilopoulos, Philippe, 2019. "The value of flexibility in power markets," Energy Policy, Elsevier, vol. 125(C), pages 347-357.
    7. Marshman, Daniel & Brear, Michael & Ring, Brendan, 2022. "Impact of unit commitment and RoCoF constraints on revenue sufficiency in decarbonising wholesale electricity markets," Energy Economics, Elsevier, vol. 106(C).
    8. Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," Energy Economics, Elsevier, vol. 92(C).
    9. Stephenson, Eleanor & Doukas, Alexander & Shaw, Karena, 2012. "“Greenwashing gas: Might a ‘transition fuel’ label legitimize carbon-intensive natural gas development?”," Energy Policy, Elsevier, vol. 46(C), pages 452-459.
    10. Zerrahn, Alexander & Krekel, Christian, 2015. "Sowing the Wind and Reaping the Whirlwind? The Effect of Wind Turbines on Residential Well-Being," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112956, Verein für Socialpolitik / German Economic Association.
    11. Bolinger, Mark & Millstein, Dev & Gorman, Will & Dobson, Patrick & Jeong, Seongeun, 2023. "Mind the gap: Comparing the net value of geothermal, wind, solar, and solar+storage in the Western United States," Renewable Energy, Elsevier, vol. 205(C), pages 999-1009.
    12. Mihaela IONESCU, 2019. "The Effects Of Electricity From Renewable Energy For The Energy Security Of Romania," SEA - Practical Application of Science, Romanian Foundation for Business Intelligence, Editorial Department, issue 21, pages 197-203, December.
    13. Healey, Stephen & Jaccard, Mark, 2016. "Abundant low-cost natural gas and deep GHG emissions reductions for the United States," Energy Policy, Elsevier, vol. 98(C), pages 241-253.
    14. Eleanor Stephenson & Karena Shaw, 2013. "¨ A Dilemma of Abundance: Governance Challenges of Reconciling Shale Gas Development and Climate Change Mitigation," Sustainability, MDPI, vol. 5(5), pages 1-23, May.
    15. Huppmann, Daniel & Egging, Ruud, 2014. "Market power, fuel substitution and infrastructure – A large-scale equilibrium model of global energy markets," Energy, Elsevier, vol. 75(C), pages 483-500.
    16. Sinn, Hans-Werner, 2017. "Buffering volatility: A study on the limits of Germany's energy revolution," European Economic Review, Elsevier, vol. 99(C), pages 130-150.
    17. Simshauser, Paul & Newbery, David, 2024. "Non-firm vs priority access: On the long run average and marginal costs of renewables in Australia," Energy Economics, Elsevier, vol. 136(C).
    18. Simshauser, Paul, 2021. "Renewable Energy Zones in Australia's National Electricity Market," Energy Economics, Elsevier, vol. 101(C).
    19. Bistline, John E.T. & Young, David T., 2020. "Emissions impacts of future battery storage deployment on regional power systems," Applied Energy, Elsevier, vol. 264(C).
    20. Philip Tafarte & Marcus Eichhorn & Daniela Thrän, 2019. "Capacity Expansion Pathways for a Wind and Solar Based Power Supply and the Impact of Advanced Technology—A Case Study for Germany," Energies, MDPI, vol. 12(2), pages 1-23, January.

    More about this item

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aen:journl:ej40-2-huang. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David Williams (email available below). General contact details of provider: https://edirc.repec.org/data/iaeeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.