IDEAS home Printed from https://ideas.repec.org/p/diw/diwwpp/dp1379.html
   My bibliography  Save this paper

National-Strategic Investment in European Power Transmission Capacity

Author

Listed:
  • Daniel Huppmann
  • Jonas Egerer

Abstract

The transformation of the European energy system requires substantial investment in transmission capacity to facilitate cross-border trade and to efficiently integrate renewable energy sources. However, network planning in the EU is still mainly a national prerogative. In contrast to other studies aiming to identify the pan-European (continental) welfare-optimal transmission expansion, we investigate the impact of national regulators deciding on network investment strategically, with the aim of maximizing consumer surplus and generator profits in their jurisdiction. This reflects the inadequacy of current mechanisms to compensate for welfare re-allocations across national boundaries arising from network upgrades. We propose a three-stage equilibrium model to describe the Nash game between zonal planners (i.e., national governments, regulators, or system operators), each taking into account the impact of network expansion on the electricity spot market and the resulting welfare effects on the constituents within her jurisdiction. Using a four-node sample network, we identify several Nash equilibria of the game between the zonal planners, and illustrate the failure to reach the first-best welfare expansion in the absence of an effective compensation mechanism.

Suggested Citation

  • Daniel Huppmann & Jonas Egerer, 2014. "National-Strategic Investment in European Power Transmission Capacity," Discussion Papers of DIW Berlin 1379, DIW Berlin, German Institute for Economic Research.
  • Handle: RePEc:diw:diwwpp:dp1379
    as

    Download full text from publisher

    File URL: https://www.diw.de/documents/publikationen/73/diw_01.c.462980.de/dp1379.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gately, Dermot, 1974. "Sharing the Gains from Regional Cooperation: A Game Theoretic Application to Planning Investment in Electric Power," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 15(1), pages 195-208, February.
    2. Juan Rosellón & Hannes Weigt, 2011. "A Dynamic Incentive Mechanism for Transmission Expansion in Electricity Networks: Theory, Modeling, and Application," The Energy Journal, , vol. 32(1), pages 119-148, January.
    3. Egerer, Jonas & Kunz, Friedrich & Hirschhausen, Christian von, 2013. "Development scenarios for the North and Baltic Seas Grid – A welfare economic analysis," Utilities Policy, Elsevier, vol. 27(C), pages 123-134.
    4. O'Neill, Richard P. & Sotkiewicz, Paul M. & Hobbs, Benjamin F. & Rothkopf, Michael H. & Stewart, William R., 2005. "Efficient market-clearing prices in markets with nonconvexities," European Journal of Operational Research, Elsevier, vol. 164(1), pages 269-285, July.
    5. RUIZ, Carlos & CONEJO, Antonio J. & SMEERS, Yves, 2012. "Equilibria in an oligopolistic electricity pool with stepwise offer curves," LIDAM Reprints CORE 2395, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Villumsen, J.C. & Philpott, A.B., 2012. "Investment in electricity networks with transmission switching," European Journal of Operational Research, Elsevier, vol. 222(2), pages 377-385.
    7. Alexander Zerrahn & Daniel Huppmann, 2014. "Network Expansion to Mitigate Market Power: How Increased Integration Fosters Welfare," Discussion Papers of DIW Berlin 1380, DIW Berlin, German Institute for Economic Research.
    8. Jonas Egerer & Clemens Gerbaulet & Casimir Lorenz, 2013. "European Electricity Grid Infrastructure Expansion in a 2050 Context," Discussion Papers of DIW Berlin 1299, DIW Berlin, German Institute for Economic Research.
    9. Xinmin Hu & Daniel Ralph, 2007. "Using EPECs to Model Bilevel Games in Restructured Electricity Markets with Locational Prices," Operations Research, INFORMS, vol. 55(5), pages 809-827, October.
    10. Thomas-Olivier Léautier & Véronique Thelen, 2009. "Optimal expansion of the power transmission grid: why not?," Journal of Regulatory Economics, Springer, vol. 36(2), pages 127-153, October.
    11. Francis Bloch & Matthew Jackson, 2006. "Definitions of equilibrium in network formation games," International Journal of Game Theory, Springer;Game Theory Society, vol. 34(3), pages 305-318, October.
    12. Bloch, Francis & Jackson, Matthew O., 2007. "The formation of networks with transfers among players," Journal of Economic Theory, Elsevier, vol. 133(1), pages 83-110, March.
    13. Florian Leuthold & Hannes Weigt & Christian Hirschhausen, 2012. "A Large-Scale Spatial Optimization Model of the European Electricity Market," Networks and Spatial Economics, Springer, vol. 12(1), pages 75-107, March.
    14. Schill, Wolf-Peter & Egerer, Jonas & Rosellón, Juan, 2015. "Testing Regulatory Regimes for Power Transmission Expansion with Fluctuating Demand and Wind Generation," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 47(1), pages 1-28.
    15. A. Schröder & T. Traber & C. Kemfert, 2013. "Market Driven Power Plant Investment Perspectives In Europe: Climate Policy And Technology Scenarios Until 2050 In The Model Emelie-Esy," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(supp0), pages 1-22.
    16. Gabriel, Steven A. & Leuthold, Florian U., 2010. "Solving discretely-constrained MPEC problems with applications in electric power markets," Energy Economics, Elsevier, vol. 32(1), pages 3-14, January.
    17. Neuhoff, Karsten & Barquin, Julian & Boots, Maroeska G. & Ehrenmann, Andreas & Hobbs, Benjamin F. & Rijkers, Fieke A.M. & Vazquez, Miguel, 2005. "Network-constrained Cournot models of liberalized electricity markets: the devil is in the details," Energy Economics, Elsevier, vol. 27(3), pages 495-525, May.
    18. SMEERS, Yves, 1997. "Computable equilibrium models and the restructuring of the European electricity and gas markets," LIDAM Discussion Papers CORE 1997061, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    19. Daxhelet, O. & Smeers, Y., 2007. "The EU regulation on cross-border trade of electricity: A two-stage equilibrium model," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1396-1412, September.
    20. Yves Smeers, 1997. "Computable Equilibrium Models and the Restructuring of the European Electricity and Gas Markets," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 1-31.
    21. MURPHY, Frédéric & SMEERS, Yves, 2010. "On the impact of forward markets on investments in oligopolistic markets with reference to electricity," LIDAM Reprints CORE 2216, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    22. Thomas-Olivier Léautier & Véronique Thelen, 2009. "Optimal expansion of the power transmission grid: why not?," Post-Print hal-02402972, HAL.
    23. Harker, Patrick T., 1991. "Generalized Nash games and quasi-variational inequalities," European Journal of Operational Research, Elsevier, vol. 54(1), pages 81-94, September.
    24. Tanachai Limpaitoon, Yihsu Chen, and Shmuel S. Oren, 2014. "The Impact of Imperfect Competition in Emission Permits Trading on Oligopolistic Electricity Markets," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    25. Ruiz, C. & Conejo, A.J., 2015. "Robust transmission expansion planning," European Journal of Operational Research, Elsevier, vol. 242(2), pages 390-401.
    26. Giorgia Oggioni & Yves Smeers & Elisabetta Allevi & Siegfried Schaible, 2012. "A Generalized Nash Equilibrium Model of Market Coupling in the European Power System," Networks and Spatial Economics, Springer, vol. 12(4), pages 503-560, December.
    27. Anderson, E.J. & Cau, T.D.H., 2011. "Implicit collusion and individual market power in electricity markets," European Journal of Operational Research, Elsevier, vol. 211(2), pages 403-414, June.
    28. S. Siddiqui & S. Gabriel, 2013. "An SOS1-Based Approach for Solving MPECs with a Natural Gas Market Application," Networks and Spatial Economics, Springer, vol. 13(2), pages 205-227, June.
    29. Smeers, Y., 1997. "Computable equilibrium models and the restructuring of the European electricity and gas markets," LIDAM Reprints CORE 1280, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    30. Frederic Murphy & Yves Smeers, 2010. "On the Impact of Forward Markets on Investments in Oligopolistic Markets with Reference to Electricity," Operations Research, INFORMS, vol. 58(3), pages 515-528, June.
    31. OGGIONI, Giorgia & SMEERS, Yves, 2013. "Market failures of market coupling and counter-trading in Europe: an illustrative model based discussion," LIDAM Reprints CORE 2553, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    32. Parpas, Panos & Webster, Mort, 2014. "A stochastic multiscale model for electricity generation capacity expansion," European Journal of Operational Research, Elsevier, vol. 232(2), pages 359-374.
    33. Pozo, David & Contreras, Javier & Sauma, Enzo, 2013. "If you build it, he will come: Anticipative power transmission planning," Energy Economics, Elsevier, vol. 36(C), pages 135-146.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Pozo & Enzo Sauma & Javier Contreras, 2017. "Basic theoretical foundations and insights on bilevel models and their applications to power systems," Annals of Operations Research, Springer, vol. 254(1), pages 303-334, July.
    2. Alexander Zerrahn & Daniel Huppmann, 2014. "Network Expansion to Mitigate Market Power: How Increased Integration Fosters Welfare," Discussion Papers of DIW Berlin 1380, DIW Berlin, German Institute for Economic Research.
    3. Alexander Zerrahn & Daniel Huppmann, 2017. "Network Expansion to Mitigate Market Power," Networks and Spatial Economics, Springer, vol. 17(2), pages 611-644, June.
    4. Fernández, Mauricio & Muñoz, Francisco D. & Moreno, Rodrigo, 2020. "Analysis of imperfect competition in natural gas supply contracts for electric power generation: A closed-loop approach," Energy Economics, Elsevier, vol. 87(C).
    5. Grimm, Veronika & Martin, Alexander & Schmidt, Martin & Weibelzahl, Martin & Zöttl, Gregor, 2016. "Transmission and generation investment in electricity markets: The effects of market splitting and network fee regimes," European Journal of Operational Research, Elsevier, vol. 254(2), pages 493-509.
    6. Gerbaulet, C. & Weber, A., 2018. "When regulators do not agree: Are merchant interconnectors an option? Insights from an analysis of options for network expansion in the Baltic Sea region," Energy Policy, Elsevier, vol. 117(C), pages 228-246.
    7. Spiridonova, Olga, 2016. "Transmission capacities and competition in Western European electricity market," Energy Policy, Elsevier, vol. 96(C), pages 260-273.
    8. Dávid Csercsik, 2016. "Competition and Cooperation in a Bidding Model of Electrical Energy Trade," Networks and Spatial Economics, Springer, vol. 16(4), pages 1043-1073, December.
    9. Jonas Egerer, 2016. "Open Source Electricity Model for Germany (ELMOD-DE)," Data Documentation 83, DIW Berlin, German Institute for Economic Research.
    10. Wolf-Peter Schill & Jonas Egerer & Juan Rosellón, 2015. "Testing regulatory regimes for power transmission expansion with fluctuating demand and wind generation," Journal of Regulatory Economics, Springer, vol. 47(1), pages 1-28, February.
    11. Jan Abrell & Hannes Weigt, 2012. "Combining Energy Networks," Networks and Spatial Economics, Springer, vol. 12(3), pages 377-401, September.
    12. Huppmann, Daniel & Siddiqui, Sauleh, 2018. "An exact solution method for binary equilibrium problems with compensation and the power market uplift problem," European Journal of Operational Research, Elsevier, vol. 266(2), pages 622-638.
    13. Weigt, Hannes, 2009. "A Review of Liberalization and Modeling of Electricity Markets," MPRA Paper 65651, University Library of Munich, Germany.
    14. Zugang Liu & Anna Nagurney, 2009. "An integrated electric power supply chain and fuel market network framework: Theoretical modeling with empirical analysis for New England," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(7), pages 600-624, October.
    15. Dávid Csercsik & László Á. Kóczy, 2017. "Efficiency and Stability in Electrical Power Transmission Networks: a Partition Function Form Approach," Networks and Spatial Economics, Springer, vol. 17(4), pages 1161-1184, December.
    16. Moiseeva, Ekaterina & Wogrin, Sonja & Hesamzadeh, Mohammad Reza, 2017. "Generation flexibility in ramp rates: Strategic behavior and lessons for electricity market design," European Journal of Operational Research, Elsevier, vol. 261(2), pages 755-771.
    17. Kasina, Saamrat & Hobbs, Benjamin F., 2020. "The value of cooperation in interregional transmission planning: A noncooperative equilibrium model approach," European Journal of Operational Research, Elsevier, vol. 285(2), pages 740-752.
    18. Clemens Gerbaulet & Alexander Weber, 2014. "Is There Still a Case for Merchant Interconnectors?: Insights from an Analysis of Welfare and Distributional Aspects of Options for Network Expansion in the Baltic Sea Region," Discussion Papers of DIW Berlin 1404, DIW Berlin, German Institute for Economic Research.
    19. Rajnish Kamat & Shmuel Oren, 2004. "Two-settlement Systems for Electricity Markets under Network Uncertainty and Market Power," Journal of Regulatory Economics, Springer, vol. 25(1), pages 5-37, January.
    20. Steven Gabriel & Sauleh Siddiqui & Antonio Conejo & Carlos Ruiz, 2013. "Solving Discretely-Constrained Nash–Cournot Games with an Application to Power Markets," Networks and Spatial Economics, Springer, vol. 13(3), pages 307-326, September.

    More about this item

    Keywords

    Electricity transmission; network expansion; Generalized Nash equilibrium (GNE); mixed-integer equilibrium problem under equilibrium constraints (MI-EPEC);
    All these keywords.

    JEL classification:

    • L51 - Industrial Organization - - Regulation and Industrial Policy - - - Economics of Regulation
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:diw:diwwpp:dp1379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bibliothek (email available below). General contact details of provider: https://edirc.repec.org/data/diwbede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.