IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v277y2023ics0360544223011040.html
   My bibliography  Save this article

Optimal bidding strategy of a gas-fired power plant in interdependent low-carbon electricity and natural gas markets

Author

Listed:
  • Dimitriadis, Christos N.
  • Tsimopoulos, Evangelos G.
  • Georgiadis, Michael C.

Abstract

This work presents a bi-level optimization framework to determine the optimal bidding strategies for a strategic gas-fired power plant, exerting market power in interdependent pool-based electricity and natural gas markets, under a carbon emission trading scheme (CETS). The upper-level problem aims at maximizing the profits of the strategic player, while at the lower-level problem, the day-ahead electricity and natural gas markets are cleared sequentially, considering the provision of carbon emission allowances for conventional power producers and high penetration of wind power generation. The bi-level formulation is initially recast into a mathematical program with equilibrium constraints (MPEC), using the Karush-Kuhn-Tucker optimality conditions and duality theory, and is further reformulated into a mixed integer linear program. The proposed algorithm is applied to a Pennsylvania-New Jersey-Maryland (PJM) 5-bus power grid, incurred by transmission constraints and a single node natural gas network. Numerical simulations provide CETS-embedded electricity clearing prices and optimal bidding decisions for the strategic gas-fired power plant, under plausible power transmission congestions and natural gas prices increment scenarios.

Suggested Citation

  • Dimitriadis, Christos N. & Tsimopoulos, Evangelos G. & Georgiadis, Michael C., 2023. "Optimal bidding strategy of a gas-fired power plant in interdependent low-carbon electricity and natural gas markets," Energy, Elsevier, vol. 277(C).
  • Handle: RePEc:eee:energy:v:277:y:2023:i:c:s0360544223011040
    DOI: 10.1016/j.energy.2023.127710
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223011040
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127710?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ordoudis, Christos & Pinson, Pierre & Morales, Juan M., 2019. "An Integrated Market for Electricity and Natural Gas Systems with Stochastic Power Producers," European Journal of Operational Research, Elsevier, vol. 272(2), pages 642-654.
    2. Yihsu Chen & Benjamin Hobbs & Sven Leyffer & Todd Munson, 2006. "Leader-Follower Equilibria for Electric Power and NO x Allowances Markets," Computational Management Science, Springer, vol. 3(4), pages 307-330, September.
    3. Zhang, Xinyue & Guo, Xiaopeng & Zhang, Xingping, 2023. "Bidding modes for renewable energy considering electricity-carbon integrated market mechanism based on multi-agent hybrid game," Energy, Elsevier, vol. 263(PA).
    4. Tsimopoulos, Evangelos G. & Georgiadis, Michael C., 2021. "Nash equilibria in electricity pool markets with large-scale wind power integration," Energy, Elsevier, vol. 228(C).
    5. Tsimopoulos, Evangelos G. & Georgiadis, Michael C., 2019. "Optimal strategic offerings for a conventional producer in jointly cleared energy and balancing markets under high penetration of wind power production," Applied Energy, Elsevier, vol. 244(C), pages 16-35.
    6. Wang, Jian & Xin, Hao & Xie, Ning & Wang, Yong, 2022. "Equilibrium models of coordinated electricity and natural gas markets with different coupling information exchanging channels," Energy, Elsevier, vol. 239(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Kai & Wang, Kunyu & Wu, Chengyu & Chen, Guo & Xue, Yusheng & Dong, Zhaoyang & Liu, Nian, 2024. "Trajectory simulation and optimization for interactive electricity-carbon system evolution," Applied Energy, Elsevier, vol. 360(C).
    2. Jung, Jihyeok & Moon, Saedaseul & Yeo, Sangmin & Lee, Deok-Joo, 2023. "How would the carbon market affect the choice of input factors for production? A duopolistic model," Energy, Elsevier, vol. 282(C).
    3. Xiang, Qing & Pan, Hengyu & Ma, Xiaohan & Yang, Mingdong & Lyu, Yanfeng & Zhang, Xiaohong & Shui, Wei & Liao, Wenjie & Xiao, Yinlong & Wu, Jun & Zhang, Yanzong & Xu, Min, 2024. "Impacts of energy-saving and emission-reduction on sustainability of cement production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    4. Meng, Ming & Pang, Tingting & Li, Xinxin & Niu, Yi, 2024. "Production decision analysis of China's fossil fuel power enterprises in dual market conditions," Energy, Elsevier, vol. 292(C).
    5. Zhu, Yanmei & Zhou, Yerong & Tao, Xiangming & Chen, Shijun & Huang, Weibin & Ma, Guangwen, 2024. "A new clearing method for cascade hydropower spot market," Energy, Elsevier, vol. 289(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christos N. Dimitriadis & Evangelos G. Tsimopoulos & Michael C. Georgiadis, 2021. "A Review on the Complementarity Modelling in Competitive Electricity Markets," Energies, MDPI, vol. 14(21), pages 1-27, November.
    2. Dimitriadis, Christos N. & Tsimopoulos, Evangelos G. & Georgiadis, Michael C., 2022. "Strategic bidding of an energy storage agent in a joint energy and reserve market under stochastic generation," Energy, Elsevier, vol. 242(C).
    3. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    4. Zhou, Dequn & Zhang, Yining & Wang, Qunwei & Ding, Hao, 2024. "How do uncertain renewable energy induced risks evolve in a two-stage deregulated wholesale power market," Applied Energy, Elsevier, vol. 353(PB).
    5. Wang, Jian & Xin, Hao & Xie, Ning & Wang, Yong, 2022. "Equilibrium models of coordinated electricity and natural gas markets with different coupling information exchanging channels," Energy, Elsevier, vol. 239(PA).
    6. Tan, Qinliang & Han, Jian & Liu, Yuan, 2023. "Examining the synergistic diffusion process of carbon capture and renewable energy generation technologies under market environment: A multi-agent simulation analysis," Energy, Elsevier, vol. 282(C).
    7. Lin Wang & Yuping Xing, 2022. "Risk Assessment of a Coupled Natural Gas and Electricity Market Considering Dual Interactions: A System Dynamics Model," Energies, MDPI, vol. 16(1), pages 1-18, December.
    8. Egerer, Jonas & Grimm, Veronika & Grübel, Julia & Zöttl, Gregor, 2022. "Long-run market equilibria in coupled energy sectors: A study of uniqueness," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1335-1354.
    9. Dávid Csercsik, 2016. "Competition and Cooperation in a Bidding Model of Electrical Energy Trade," Networks and Spatial Economics, Springer, vol. 16(4), pages 1043-1073, December.
    10. Hosseini, Seyyed Ahmad & Toubeau, Jean-François & De Grève, Zacharie & Vallée, François, 2020. "An advanced day-ahead bidding strategy for wind power producers considering confidence level on the real-time reserve provision," Applied Energy, Elsevier, vol. 280(C).
    11. Giuseppe De Feo & Joana Resende & Maria-Eugenia Sanin, 2012. "Optimal Allocation Of Tradable Emission Permits Under Upstream–Downstream Strategic Interaction," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 14(04), pages 1-23.
    12. Shariat Torbaghan, Shahab & Madani, Mehdi & Sels, Peter & Virag, Ana & Le Cadre, Hélène & Kessels, Kris & Mou, Yuting, 2021. "Designing day-ahead multi-carrier markets for flexibility: Models and clearing algorithms," Applied Energy, Elsevier, vol. 285(C).
    13. Anna Schwele & Christos Ordoudis & Pierre Pinson & Jalal Kazempour, 2021. "Coordination of power and natural gas markets via financial instruments," Computational Management Science, Springer, vol. 18(4), pages 505-538, October.
    14. Ali Ekhtiari & Damian Flynn & Eoin Syron, 2020. "Investigation of the Multi-Point Injection of Green Hydrogen from Curtailed Renewable Power into a Gas Network," Energies, MDPI, vol. 13(22), pages 1-21, November.
    15. Zhai, Junyi & Wang, Sheng & Guo, Lei & Jiang, Yuning & Kang, Zhongjian & Jones, Colin N., 2022. "Data-driven distributionally robust joint chance-constrained energy management for multi-energy microgrid," Applied Energy, Elsevier, vol. 326(C).
    16. Arriet, Andrea & Matis, Timothy I. & Feijoo, Felipe, 2024. "Electricity sector impacts of water taxation for natural gas supply under high renewable generation," Energy, Elsevier, vol. 294(C).
    17. Tian, Xiaoge & Chen, Weiming & Hu, Jinglu, 2023. "Game-theoretic modeling of power supply chain coordination under demand variation in China: A case study of Guangdong Province," Energy, Elsevier, vol. 262(PA).
    18. Makoto Tanaka, 2012. "Multi-Sector Model of Tradable Emission Permits," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 51(1), pages 61-77, January.
    19. Oduro, Richard A. & Taylor, Peter G., 2023. "Future pathways for energy networks: A review of international experiences in high income countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    20. Schlund, David & Schönfisch, Max, 2021. "Analysing the impact of a renewable hydrogen quota on the European electricity and natural gas markets," Applied Energy, Elsevier, vol. 304(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:277:y:2023:i:c:s0360544223011040. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.