IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i24p8484-d703516.html
   My bibliography  Save this article

Regulation Characteristics and Load Optimization of Pump-Turbine in Variable-Speed Operation

Author

Listed:
  • He Wang

    (China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

  • Zhijie Ma

    (China Institute of Water Resources and Hydropower Research, Beijing 100038, China
    School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China)

Abstract

In order to improve the operating and regulation characteristics of the hydropower unit and to stabilize the load fluctuations, variable-speed pumped storage technology based on converters has been proposed and given more attention recently. However, different from the conventional units, due to the variability of operation conditions, variable-speed units need to develop a load optimization strategy in terms of operating parameter identification to ensure state matching for operation. Therefore, this paper proposes an optimization search step based on the model test curve, and the process of parameter optimization search is elaborated and calculated in the turbine operating condition and pump operating condition, respectively. A mathematical model of the turbine regulation system is established to analyze the influence of speed and guide vane related parameters on the regulation characteristics, and the achievable operating range and regulation capacity in the variable-speed condition is pointed out based on pump-turbine model test, as well as the advantages over the fixed-speed operation. The results show that by applying the load optimization method, the variable-speed unit can be significantly improved in terms of operating efficiency, especially at low head and low power conditions. Meanwhile, a certain range of active power regulation can be realized by the decoupling control of the converter and measuring the guide vane opening in both modes. The analysis of the model test verifies the effectiveness of the variable-speed regulation operation of pump-turbine and provides a reference for the design and operation of the variable-speed hydropower units.

Suggested Citation

  • He Wang & Zhijie Ma, 2021. "Regulation Characteristics and Load Optimization of Pump-Turbine in Variable-Speed Operation," Energies, MDPI, vol. 14(24), pages 1-21, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8484-:d:703516
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/24/8484/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/24/8484/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ramirez, Dionisio & Martinez, Sergio & Carrero, Carmelo & Platero, Carlos A., 2012. "Improvements in the grid connection of renewable generators with full power converters," Renewable Energy, Elsevier, vol. 43(C), pages 90-100.
    2. Cavazzini, Giovanna & Houdeline, Jean-Bernard & Pavesi, Giorgio & Teller, Olivier & Ardizzon, Guido, 2018. "Unstable behaviour of pump-turbines and its effects on power regulation capacity of pumped-hydro energy storage plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 399-409.
    3. Alizadeh Bidgoli, Mohsen & Yang, Weijia & Ahmadian, Ali, 2020. "DFIM versus synchronous machine for variable speed pumped storage hydropower plants: A comparative evaluation of technical performance," Renewable Energy, Elsevier, vol. 159(C), pages 72-86.
    4. Yang, Weijia & Norrlund, Per & Chung, Chi Yung & Yang, Jiandong & Lundin, Urban, 2018. "Eigen-analysis of hydraulic-mechanical-electrical coupling mechanism for small signal stability of hydropower plant," Renewable Energy, Elsevier, vol. 115(C), pages 1014-1025.
    5. Javed, Muhammad Shahzad & Zhong, Dan & Ma, Tao & Song, Aotian & Ahmed, Salman, 2020. "Hybrid pumped hydro and battery storage for renewable energy based power supply system," Applied Energy, Elsevier, vol. 257(C).
    6. Beevers, D. & Branchini, L. & Orlandini, V. & De Pascale, A. & Perez-Blanco, H., 2015. "Pumped hydro storage plants with improved operational flexibility using constant speed Francis runners," Applied Energy, Elsevier, vol. 137(C), pages 629-637.
    7. Edson Bortoni & Zulcy de Souza & Augusto Viana & Helcio Villa-Nova & Ângelo Rezek & Luciano Pinto & Roberto Siniscalchi & Rafael Bragança & José Bernardes, 2019. "The Benefits of Variable Speed Operation in Hydropower Plants Driven by Francis Turbines," Energies, MDPI, vol. 12(19), pages 1-20, September.
    8. Feng, Chen & Zheng, Yuan & Li, Chaoshun & Mai, Zijun & Wu, Wei & Chen, Huixiang, 2021. "Cost advantage of adjustable-speed pumped storage unit for daily operation in distributed hybrid system," Renewable Energy, Elsevier, vol. 176(C), pages 1-10.
    9. Yang, Weijia & Yang, Jiandong, 2019. "Advantage of variable-speed pumped storage plants for mitigating wind power variations: Integrated modelling and performance assessment," Applied Energy, Elsevier, vol. 237(C), pages 720-732.
    10. Cheng, Meng & Sami, Saif Sabah & Wu, Jianzhong, 2017. "Benefits of using virtual energy storage system for power system frequency response," Applied Energy, Elsevier, vol. 194(C), pages 376-385.
    11. Weijia Yang & Per Norrlund & Linn Saarinen & Adam Witt & Brennan Smith & Jiandong Yang & Urban Lundin, 2018. "Burden on hydropower units for short-term balancing of renewable power systems," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    12. Huang, Sunhua & Xiong, Linyun & Wang, Jie & Li, Penghan & Wang, Ziqiang & Ma, Meilng, 2020. "Fixed-time synergetic controller for stabilization of hydraulic turbine regulating system," Renewable Energy, Elsevier, vol. 157(C), pages 1233-1242.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Damian Liszka & Zbigniew Krzemianowski & Tomasz Węgiel & Dariusz Borkowski & Andrzej Polniak & Konrad Wawrzykowski & Artur Cebula, 2022. "Alternative Solutions for Small Hydropower Plants," Energies, MDPI, vol. 15(4), pages 1-31, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Xiaoqiang & Li, Chaoshun & Liu, Dong & Wang, He & Xu, Rongli & Lu, Xueding & Zhu, Zhiwei, 2023. "Multi-time scale model reduction strategy of variable-speed pumped storage unit grid-connected system for small-signal oscillation stability analysis," Renewable Energy, Elsevier, vol. 211(C), pages 985-1009.
    2. Wang, Wen-Quan & Yu, Zhi-Feng & Yan, Yan & Wei, Xin-Yu, 2024. "Numerical investigation on vortex characteristics in a low-head Francis turbine operating of adjustable-speed at part load conditions," Energy, Elsevier, vol. 302(C).
    3. Huang, Yifan & Yang, Weijia & Zhao, Zhigao & Han, Wenfu & Li, Yulan & Yang, Jiandong, 2023. "Dynamic modeling and favorable speed command of variable-speed pumped-storage unit during power regulation," Renewable Energy, Elsevier, vol. 206(C), pages 769-783.
    4. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Amin, Muhammad Yasir, 2020. "Solar and wind power generation systems with pumped hydro storage: Review and future perspectives," Renewable Energy, Elsevier, vol. 148(C), pages 176-192.
    5. Huang, Jingjian & Xu, Yujie & Guo, Huan & Geng, Xiaoqian & Chen, Haisheng, 2022. "Dynamic performance and control scheme of variable-speed compressed air energy storage," Applied Energy, Elsevier, vol. 325(C).
    6. Liu, Dong & Wang, Xin & Peng, Yunshui & Zhang, Hui & Xiao, Zhihuai & Han, Xiangdong & Malik, O.P., 2020. "Stability analysis of hydropower units under full operating conditions considering turbine nonlinearity," Renewable Energy, Elsevier, vol. 154(C), pages 723-742.
    7. Liu, Dong & Li, Chaoshun & Tan, Xiaoqiang & Lu, Xueding & Malik, O.P., 2021. "Damping characteristics analysis of hydropower units under full operating conditions and control parameters: Accurate quantitative evaluation based on refined models," Applied Energy, Elsevier, vol. 292(C).
    8. Mahfoud, Rabea Jamil & Alkayem, Nizar Faisal & Zhang, Yuquan & Zheng, Yuan & Sun, Yonghui & Alhelou, Hassan Haes, 2023. "Optimal operation of pumped hydro storage-based energy systems: A compendium of current challenges and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    9. Xu, Beibei & Zhang, Jingjing & Egusquiza, Mònica & Chen, Diyi & Li, Feng & Behrens, Paul & Egusquiza, Eduard, 2021. "A review of dynamic models and stability analysis for a hydro-turbine governing system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    10. Xiangxin Meng & Yakun Zhang & Zekun Wu & Wenzhe Tang, 2023. "Enhancing Operations Management of Pumped Storage Power Stations by Partnering from the Perspective of Multi-Energy Complementarity," Energies, MDPI, vol. 16(19), pages 1-19, October.
    11. Nan Zhang & Xiaoming Xue & Na Sun & Yanhui Gu & Wei Jiang & Chaoshun Li, 2022. "Nonlinear Modeling and Stability of a Doubly-Fed Variable Speed Pumped Storage Power Station with Surge Tank Considering Nonlinear Pump Turbine Characteristics," Energies, MDPI, vol. 15(11), pages 1-24, June.
    12. Feng, Chen & Zheng, Yuan & Li, Chaoshun & Mai, Zijun & Wu, Wei & Chen, Huixiang, 2021. "Cost advantage of adjustable-speed pumped storage unit for daily operation in distributed hybrid system," Renewable Energy, Elsevier, vol. 176(C), pages 1-10.
    13. Shi, Yousong & Zhou, Jianzhong & Guo, Wencheng & Zheng, Yang & Li, Chaoshun & Zhang, Yongchuan, 2022. "Nonlinear dynamic characteristics analysis and adaptive avoid vortex-coordinated optimal control of hydropower units under grid connection," Renewable Energy, Elsevier, vol. 200(C), pages 911-930.
    14. Sha Li & Zezhou Cao & Kuangqing Hu & Diyi Chen, 2023. "Performance Assessment for Primary Frequency Regulation of Variable-Speed Pumped Storage Plant in Isolated Power Systems," Energies, MDPI, vol. 16(3), pages 1-16, January.
    15. Yuqiang Tian & Bin Wang & Diyi Chen & Shaokun Wang & Peng Chen & Ying Yang, 2019. "Design of a Nonlinear Predictive Controller for a Fractional-Order Hydraulic Turbine Governing System with Mechanical Time Delay," Energies, MDPI, vol. 12(24), pages 1-16, December.
    16. Hoffstaedt, J.P. & Truijen, D.P.K. & Fahlbeck, J. & Gans, L.H.A. & Qudaih, M. & Laguna, A.J. & De Kooning, J.D.M. & Stockman, K. & Nilsson, H. & Storli, P.-T. & Engel, B. & Marence, M. & Bricker, J.D., 2022. "Low-head pumped hydro storage: A review of applicable technologies for design, grid integration, control and modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    17. Dariusz Borkowski & Marek Majdak, 2020. "Small Hydropower Plants with Variable Speed Operation—An Optimal Operation Curve Determination," Energies, MDPI, vol. 13(23), pages 1-20, November.
    18. Jungsub Sim & Minsoo Kim & Dongjoo Kim & Hongseok Kim, 2021. "Cloud Energy Storage System Operation with Capacity P2P Transaction," Energies, MDPI, vol. 14(2), pages 1-13, January.
    19. De Vivero-Serrano, Gustavo & Bruninx, Kenneth & Delarue, Erik, 2019. "Implications of bid structures on the offering strategies of merchant energy storage systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    20. Barelli, L. & Bidini, G. & Bonucci, F. & Castellini, L. & Fratini, A. & Gallorini, F. & Zuccari, A., 2019. "Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants," Energy, Elsevier, vol. 173(C), pages 937-950.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8484-:d:703516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.