IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v302y2024ics0360544224015706.html
   My bibliography  Save this article

Two-stage correction prediction of wind power based on numerical weather prediction wind speed superposition correction and improved clustering

Author

Listed:
  • Yang, Mao
  • Guo, Yunfeng
  • Fan, Fulin
  • Huang, Tao

Abstract

The unavoidable wind power prediction error poses a challenge for wind power to participate in day-ahead scheduling plan. This paper proposes a two-stage correction method considering NWP wind speed and power correction. Firstly, this paper fully considers the historical similarity of NWP wind speed, and adopts the improved clustering distance for segment matching and wind speed correction based on the extracted most relevant trend component, which enhances the utilization of NWP information and avoids the randomness and uncertainty of the intelligent correction method, and gram angular field (GAF) and stacked autoencoder (SAE) are used for feature extraction and conditional variational autoencoder (CVA) is used to generate specific samples to ensure the adequacy of the clustering process. Secondly, considering the historical similarity of error of predicted power, the power is further corrected based on the proposed weighted double-constraint to realize the secondary calibration. The Proposed method is applied to several wind farms in China to verify its effectiveness. The results show that the proposed method reduces the NRMSE by 3.82 % and NMAE by 3.40 % compared with direct prediction in the wind farms in western Inner Mongolia, which is important for promoting wind power consumption and maintaining the safe and stable operation of the power system.

Suggested Citation

  • Yang, Mao & Guo, Yunfeng & Fan, Fulin & Huang, Tao, 2024. "Two-stage correction prediction of wind power based on numerical weather prediction wind speed superposition correction and improved clustering," Energy, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224015706
    DOI: 10.1016/j.energy.2024.131797
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224015706
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131797?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Mao & Huang, Yutong & Guo, Yunfeng & Zhang, Wei & Wang, Bo, 2024. "Ultra-short-term wind farm cluster power prediction based on FC-GCN and trend-aware switching mechanism," Energy, Elsevier, vol. 290(C).
    2. Ding, Yunfei & Chen, Zijun & Zhang, Hongwei & Wang, Xin & Guo, Ying, 2022. "A short-term wind power prediction model based on CEEMD and WOA-KELM," Renewable Energy, Elsevier, vol. 189(C), pages 188-198.
    3. Liu, Xingdou & Zhang, Li & Wang, Jiangong & Zhou, Yue & Gan, Wei, 2023. "A unified multi-step wind speed forecasting framework based on numerical weather prediction grids and wind farm monitoring data," Renewable Energy, Elsevier, vol. 211(C), pages 948-963.
    4. Xiong, Jinlin & Peng, Tian & Tao, Zihan & Zhang, Chu & Song, Shihao & Nazir, Muhammad Shahzad, 2023. "A dual-scale deep learning model based on ELM-BiLSTM and improved reptile search algorithm for wind power prediction," Energy, Elsevier, vol. 266(C).
    5. Zhang, Dongdong & Chen, Baian & Zhu, Hongyu & Goh, Hui Hwang & Dong, Yunxuan & Wu, Thomas, 2023. "Short-term wind power prediction based on two-layer decomposition and BiTCN-BiLSTM-attention model," Energy, Elsevier, vol. 285(C).
    6. Ding, Lin & Bai, Yulong & Liu, Ming-De & Fan, Man-Hong & Yang, Jie, 2022. "Predicting short wind speed with a hybrid model based on a piecewise error correction method and Elman neural network," Energy, Elsevier, vol. 244(PA).
    7. Cai, Haoshu & Jia, Xiaodong & Feng, Jianshe & Li, Wenzhe & Hsu, Yuan-Ming & Lee, Jay, 2020. "Gaussian Process Regression for numerical wind speed prediction enhancement," Renewable Energy, Elsevier, vol. 146(C), pages 2112-2123.
    8. Xiong, Xiong & Zou, Ruilin & Sheng, Tao & Zeng, Weilin & Ye, Xiaoling, 2023. "An ultra-short-term wind speed correction method based on the fluctuation characteristics of wind speed," Energy, Elsevier, vol. 283(C).
    9. Yang, Mao & Wang, Da & Xu, Chuanyu & Dai, Bozhi & Ma, Miaomiao & Su, Xin, 2023. "Power transfer characteristics in fluctuation partition algorithm for wind speed and its application to wind power forecasting," Renewable Energy, Elsevier, vol. 211(C), pages 582-594.
    10. Hu, Shuai & Xiang, Yue & Zhang, Hongcai & Xie, Shanyi & Li, Jianhua & Gu, Chenghong & Sun, Wei & Liu, Junyong, 2021. "Hybrid forecasting method for wind power integrating spatial correlation and corrected numerical weather prediction," Applied Energy, Elsevier, vol. 293(C).
    11. Yang, Mao & Han, Chao & Zhang, Wei & Wang, Bo, 2024. "A short-term power prediction method for wind farm cluster based on the fusion of multi-source spatiotemporal feature information," Energy, Elsevier, vol. 294(C).
    12. Wu, Zhou & Zeng, Shaoxiong & Jiang, Ruiqi & Zhang, Haoran & Yang, Zhile, 2023. "Explainable temporal dependence in multi-step wind power forecast via decomposition based chain echo state networks," Energy, Elsevier, vol. 270(C).
    13. Yang, Mao & Zhao, Meng & Huang, Dawei & Su, Xin, 2022. "A composite framework for photovoltaic day-ahead power prediction based on dual clustering of dynamic time warping distance and deep autoencoder," Renewable Energy, Elsevier, vol. 194(C), pages 659-673.
    14. Zhang, Lidong & Li, Jiao & Xu, Xiandong & Liu, Fengrui & Guo, Yuanjun & Yang, Zhile & Hu, Tianyu, 2023. "High spatial granularity residential heating load forecast based on Dendrite net model," Energy, Elsevier, vol. 269(C).
    15. Wang, Hao & Ye, Jingzhen & Huang, Linxuan & Wang, Qiang & Zhang, Haohua, 2023. "A multivariable hybrid prediction model of offshore wind power based on multi-stage optimization and reconstruction prediction," Energy, Elsevier, vol. 262(PA).
    16. Suo, Leiming & Peng, Tian & Song, Shihao & Zhang, Chu & Wang, Yuhan & Fu, Yongyan & Nazir, Muhammad Shahzad, 2023. "Wind speed prediction by a swarm intelligence based deep learning model via signal decomposition and parameter optimization using improved chimp optimization algorithm," Energy, Elsevier, vol. 276(C).
    17. Li, Lei & Yin, Xiao-Li & Jia, Xin-Chun & Sobhani, Behrooz, 2020. "Day ahead powerful probabilistic wind power forecast using combined intelligent structure and fuzzy clustering algorithm," Energy, Elsevier, vol. 192(C).
    18. Xu, Xuefang & Hu, Shiting & Shao, Huaishuang & Shi, Peiming & Li, Ruixiong & Li, Deguang, 2023. "A spatio-temporal forecasting model using optimally weighted graph convolutional network and gated recurrent unit for wind speed of different sites distributed in an offshore wind farm," Energy, Elsevier, vol. 284(C).
    19. Xu, Xuefang & Hu, Shiting & Shi, Peiming & Shao, Huaishuang & Li, Ruixiong & Li, Zhi, 2023. "Natural phase space reconstruction-based broad learning system for short-term wind speed prediction: Case studies of an offshore wind farm," Energy, Elsevier, vol. 262(PA).
    20. Yang, Mao & Wang, Da & Zhang, Wei, 2023. "A short-term wind power prediction method based on dynamic and static feature fusion mining," Energy, Elsevier, vol. 280(C).
    21. Bommidi, Bala Saibabu & Teeparthi, Kiran & Kosana, Vishalteja, 2023. "Hybrid wind speed forecasting using ICEEMDAN and transformer model with novel loss function," Energy, Elsevier, vol. 265(C).
    22. Yang, Mao & Guo, Yunfeng & Huang, Yutong, 2023. "Wind power ultra-short-term prediction method based on NWP wind speed correction and double clustering division of transitional weather process," Energy, Elsevier, vol. 282(C).
    23. Yang, Rui & Liu, Hui & Nikitas, Nikolaos & Duan, Zhu & Li, Yanfei & Li, Ye, 2022. "Short-term wind speed forecasting using deep reinforcement learning with improved multiple error correction approach," Energy, Elsevier, vol. 239(PB).
    24. Li, Yanting & Wu, Zhenyu & Su, Yan, 2023. "Adaptive short-term wind power forecasting with concept drifts," Renewable Energy, Elsevier, vol. 217(C).
    25. Liu, Hui & Yang, Rui & Wang, Tiantian & Zhang, Lei, 2021. "A hybrid neural network model for short-term wind speed forecasting based on decomposition, multi-learner ensemble, and adaptive multiple error corrections," Renewable Energy, Elsevier, vol. 165(P1), pages 573-594.
    26. Fan, Huijing & Zhen, Zhao & Liu, Nian & Sun, Yiqian & Chang, Xiqiang & Li, Yu & Wang, Fei & Mi, Zengqiang, 2023. "Fluctuation pattern recognition based ultra-short-term wind power probabilistic forecasting method," Energy, Elsevier, vol. 266(C).
    27. Ye, Lin & Li, Yilin & Pei, Ming & Zhao, Yongning & Li, Zhuo & Lu, Peng, 2022. "A novel integrated method for short-term wind power forecasting based on fluctuation clustering and history matching," Applied Energy, Elsevier, vol. 327(C).
    28. Meng, Anbo & Chen, Shun & Ou, Zuhong & Ding, Weifeng & Zhou, Huaming & Fan, Jingmin & Yin, Hao, 2022. "A hybrid deep learning architecture for wind power prediction based on bi-attention mechanism and crisscross optimization," Energy, Elsevier, vol. 238(PB).
    29. Han, Yan & Mi, Lihua & Shen, Lian & Cai, C.S. & Liu, Yuchen & Li, Kai & Xu, Guoji, 2022. "A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting," Applied Energy, Elsevier, vol. 312(C).
    30. Xu, Shiwei & Wang, Yongjun & Xu, Xinglei & Shi, Guang & Zheng, Yingya & Huang, He & Hong, Chengqiu, 2024. "A multi-step wind power group forecasting seq2seq architecture with spatial–temporal feature fusion and numerical weather prediction correction," Energy, Elsevier, vol. 291(C).
    31. Wang, Shuai & Li, Bin & Li, Guanzheng & Yao, Bin & Wu, Jianzhong, 2021. "Short-term wind power prediction based on multidimensional data cleaning and feature reconfiguration," Applied Energy, Elsevier, vol. 292(C).
    32. Zhang, Jiaan & Liu, Dong & Li, Zhijun & Han, Xu & Liu, Hui & Dong, Cun & Wang, Junyan & Liu, Chenyu & Xia, Yunpeng, 2021. "Power prediction of a wind farm cluster based on spatiotemporal correlations," Applied Energy, Elsevier, vol. 302(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Mao & Guo, Yunfeng & Huang, Yutong, 2023. "Wind power ultra-short-term prediction method based on NWP wind speed correction and double clustering division of transitional weather process," Energy, Elsevier, vol. 282(C).
    2. Lin, Qingcheng & Cai, Huiling & Liu, Hanwei & Li, Xuefeng & Xiao, Hui, 2024. "A novel ultra-short-term wind power prediction model jointly driven by multiple algorithm optimization and adaptive selection," Energy, Elsevier, vol. 288(C).
    3. Sun, Shaolong & Du, Zongjuan & Jin, Kun & Li, Hongtao & Wang, Shouyang, 2023. "Spatiotemporal wind power forecasting approach based on multi-factor extraction method and an indirect strategy," Applied Energy, Elsevier, vol. 350(C).
    4. Lv, Yunlong & Hu, Qin & Xu, Hang & Lin, Huiyao & Wu, Yufan, 2024. "An ultra-short-term wind power prediction method based on spatial-temporal attention graph convolutional model," Energy, Elsevier, vol. 293(C).
    5. Qu, Zhijian & Hou, Xinxing & Li, Jian & Hu, Wenbo, 2024. "Short-term wind farm cluster power prediction based on dual feature extraction and quadratic decomposition aggregation," Energy, Elsevier, vol. 290(C).
    6. Yang, Mao & Han, Chao & Zhang, Wei & Wang, Bo, 2024. "A short-term power prediction method for wind farm cluster based on the fusion of multi-source spatiotemporal feature information," Energy, Elsevier, vol. 294(C).
    7. Wen-Chang Tsai & Chih-Ming Hong & Chia-Sheng Tu & Whei-Min Lin & Chiung-Hsing Chen, 2023. "A Review of Modern Wind Power Generation Forecasting Technologies," Sustainability, MDPI, vol. 15(14), pages 1-40, July.
    8. Xiong, Zhanhang & Yao, Jianjiang & Huang, Yongmin & Yu, Zhaoxu & Liu, Yalei, 2024. "A wind speed forecasting method based on EMD-MGM with switching QR loss function and novel subsequence superposition," Applied Energy, Elsevier, vol. 353(PB).
    9. Yang, Mao & Huang, Yutong & Guo, Yunfeng & Zhang, Wei & Wang, Bo, 2024. "Ultra-short-term wind farm cluster power prediction based on FC-GCN and trend-aware switching mechanism," Energy, Elsevier, vol. 290(C).
    10. Chen, Wenhe & Zhou, Hanting & Cheng, Longsheng & Xia, Min, 2023. "Prediction of regional wind power generation using a multi-objective optimized deep learning model with temporal pattern attention," Energy, Elsevier, vol. 278(PB).
    11. Dongran Song & Xiao Tan & Qian Huang & Li Wang & Mi Dong & Jian Yang & Solomin Evgeny, 2024. "Review of AI-Based Wind Prediction within Recent Three Years: 2021–2023," Energies, MDPI, vol. 17(6), pages 1-22, March.
    12. Meng, Anbo & Zhang, Haitao & Yin, Hao & Xian, Zikang & Chen, Shu & Zhu, Zibin & Zhang, Zheng & Rong, Jiayu & Li, Chen & Wang, Chenen & Wu, Zhenbo & Deng, Weisi & Luo, Jianqiang & Wang, Xiaolin, 2023. "A novel multi-gradient evolutionary deep learning approach for few-shot wind power prediction using time-series GAN," Energy, Elsevier, vol. 283(C).
    13. Zhang, Chu & Li, Zhengbo & Ge, Yida & Liu, Qianlong & Suo, Leiming & Song, Shihao & Peng, Tian, 2024. "Enhancing short-term wind speed prediction based on an outlier-robust ensemble deep random vector functional link network with AOA-optimized VMD," Energy, Elsevier, vol. 296(C).
    14. Suo, Leiming & Peng, Tian & Song, Shihao & Zhang, Chu & Wang, Yuhan & Fu, Yongyan & Nazir, Muhammad Shahzad, 2023. "Wind speed prediction by a swarm intelligence based deep learning model via signal decomposition and parameter optimization using improved chimp optimization algorithm," Energy, Elsevier, vol. 276(C).
    15. Liu, Zhi-Feng & Liu, You-Yuan & Chen, Xiao-Rui & Zhang, Shu-Rui & Luo, Xing-Fu & Li, Ling-Ling & Yang, Yi-Zhou & You, Guo-Dong, 2024. "A novel deep learning-based evolutionary model with potential attention and memory decay-enhancement strategy for short-term wind power point-interval forecasting," Applied Energy, Elsevier, vol. 360(C).
    16. Lin, Shengmao & Wang, Shu & Xu, Xuefang & Li, Ruixiong & Shi, Peiming, 2024. "GAOformer: An adaptive spatiotemporal feature fusion transformer utilizing GAT and optimizable graph matrixes for offshore wind speed prediction," Energy, Elsevier, vol. 292(C).
    17. Zhang, Yagang & Kong, Xue & Wang, Jingchao & Wang, Hui & Cheng, Xiaodan, 2024. "Wind power forecasting system with data enhancement and algorithm improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    18. Hou, Guolian & Wang, Junjie & Fan, Yuzhen, 2024. "Multistep short-term wind power forecasting model based on secondary decomposition, the kernel principal component analysis, an enhanced arithmetic optimization algorithm, and error correction," Energy, Elsevier, vol. 286(C).
    19. Wang, Shuangxin & Shi, Jiarong & Yang, Wei & Yin, Qingyan, 2024. "High and low frequency wind power prediction based on Transformer and BiGRU-Attention," Energy, Elsevier, vol. 288(C).
    20. Wang, Chao & Lin, Hong & Hu, Heng & Yang, Ming & Ma, Li, 2024. "A hybrid model with combined feature selection based on optimized VMD and improved multi-objective coati optimization algorithm for short-term wind power prediction," Energy, Elsevier, vol. 293(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224015706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.