IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipcs0960148124019025.html
   My bibliography  Save this article

Short-term interval prediction strategy of photovoltaic power based on meteorological reconstruction with spatiotemporal correlation and multi-factor interval constraints

Author

Listed:
  • Yang, Mao
  • Jiang, Yue
  • Zhang, Wei
  • Li, Yi
  • Su, Xin

Abstract

Short-term photovoltaic (PV) power interval prediction provides a basis for day-ahead power dispatching and generation planning. However, the current gridded numerical weather prediction (NWP) has poor matching in specific PV stations, and the lack of consideration of PV power mutation characteristics and historical correlation in interval prediction, which further limit the improvement of PV power prediction accuracy. In this regard, this paper proposes a novel short-term interval prediction strategy for PV power. Based on the second-order extended hidden Markov model (HMM), the key meteorological elements of the PV station with poor matching are reconstructed. In the interval prediction, the trend mutation and historical correlation characteristics of the PV sequence are fully considered, and a PV power interval prediction method that combines three factors such as trend change, time correlation and numerical mutation is proposed. The proposed method is applied to a PV station in Jilin, China. The results show that compared with other methods, the RMSE of the proposed method is reduced by 5.3 % on average, and the CWC is reduced by at least 2.1 %, which verifies the effectiveness of the proposed method.

Suggested Citation

  • Yang, Mao & Jiang, Yue & Zhang, Wei & Li, Yi & Su, Xin, 2024. "Short-term interval prediction strategy of photovoltaic power based on meteorological reconstruction with spatiotemporal correlation and multi-factor interval constraints," Renewable Energy, Elsevier, vol. 237(PC).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124019025
    DOI: 10.1016/j.renene.2024.121834
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124019025
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121834?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124019025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.