IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v353y2024ipbs0306261923016124.html
   My bibliography  Save this article

A wind speed forecasting method based on EMD-MGM with switching QR loss function and novel subsequence superposition

Author

Listed:
  • Xiong, Zhanhang
  • Yao, Jianjiang
  • Huang, Yongmin
  • Yu, Zhaoxu
  • Liu, Yalei

Abstract

The ultra-short-term forecasting of wind speed is of great significance to the stable power supply of the power system. Current wind speed forecasting methods aim to improve forecasting precision while disregarding model training speed and model deployment complexity. This research proposes a lightweight hybrid model named SLF-EMD-MGM-NS for wind speed forecasting. EMD-MGM is designed as the network’s fundamental structure for reducing the hybrid model’s training time and ensuring the hybrid model has high forecasting precision. The study presents the switching loss function (SLF) mechanism. When the quantile is 0.5, an MSE-based loss function is employed for training all subsequences. When the quantile is 0.5 and 0.95, first use the wind speed fluctuation threshold to select primary subsequence, and then use the Log-Cosh-based loss function for training primary subsequences. The SLF mechanism can increase point prediction precision and interval prediction boundary stability. Moreover, a novel subsequence superposition (NS) mechanism is proposed for getting high confidence level and narrow-width interval prediction results. The NS mechanism superimposes the interval prediction results of the fluctuation subsequence with the point prediction results of the model to generate the final interval prediction results. According to the experimental results, the SLF-EMD-MGM-NS model has a high confidence level, acceptable prediction results, a narrow-width interval prediction result, and a significantly shorter training time than the other hybrid models.

Suggested Citation

  • Xiong, Zhanhang & Yao, Jianjiang & Huang, Yongmin & Yu, Zhaoxu & Liu, Yalei, 2024. "A wind speed forecasting method based on EMD-MGM with switching QR loss function and novel subsequence superposition," Applied Energy, Elsevier, vol. 353(PB).
  • Handle: RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923016124
    DOI: 10.1016/j.apenergy.2023.122248
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923016124
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122248?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Jianming & Luo, Qingxi & Tang, Jingwei & Heng, Jiani & Deng, Yuwen, 2022. "Conformalized temporal convolutional quantile regression networks for wind power interval forecasting," Energy, Elsevier, vol. 248(C).
    2. Liu, Hui & Mi, Xiwei & Li, Yanfei, 2018. "An experimental investigation of three new hybrid wind speed forecasting models using multi-decomposing strategy and ELM algorithm," Renewable Energy, Elsevier, vol. 123(C), pages 694-705.
    3. Lei Zhang & Lun Xie & Qinkai Han & Zhiliang Wang & Chen Huang, 2020. "Probability Density Forecasting of Wind Speed Based on Quantile Regression and Kernel Density Estimation," Energies, MDPI, vol. 13(22), pages 1-24, November.
    4. Bommidi, Bala Saibabu & Teeparthi, Kiran & Kosana, Vishalteja, 2023. "Hybrid wind speed forecasting using ICEEMDAN and transformer model with novel loss function," Energy, Elsevier, vol. 265(C).
    5. Yang, Rui & Liu, Hui & Nikitas, Nikolaos & Duan, Zhu & Li, Yanfei & Li, Ye, 2022. "Short-term wind speed forecasting using deep reinforcement learning with improved multiple error correction approach," Energy, Elsevier, vol. 239(PB).
    6. Chen, Kuilin & Yu, Jie, 2014. "Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach," Applied Energy, Elsevier, vol. 113(C), pages 690-705.
    7. Zhang, Chu & Ji, Chunlei & Hua, Lei & Ma, Huixin & Nazir, Muhammad Shahzad & Peng, Tian, 2022. "Evolutionary quantile regression gated recurrent unit network based on variational mode decomposition, improved whale optimization algorithm for probabilistic short-term wind speed prediction," Renewable Energy, Elsevier, vol. 197(C), pages 668-682.
    8. Monfared, Mohammad & Rastegar, Hasan & Kojabadi, Hossein Madadi, 2009. "A new strategy for wind speed forecasting using artificial intelligent methods," Renewable Energy, Elsevier, vol. 34(3), pages 845-848.
    9. Yang, Mao & Wang, Da & Xu, Chuanyu & Dai, Bozhi & Ma, Miaomiao & Su, Xin, 2023. "Power transfer characteristics in fluctuation partition algorithm for wind speed and its application to wind power forecasting," Renewable Energy, Elsevier, vol. 211(C), pages 582-594.
    10. Erdem, Ergin & Shi, Jing, 2011. "ARMA based approaches for forecasting the tuple of wind speed and direction," Applied Energy, Elsevier, vol. 88(4), pages 1405-1414, April.
    11. Wang, Jianzhou & Wang, Shuai & Zeng, Bo & Lu, Haiyan, 2022. "A novel ensemble probabilistic forecasting system for uncertainty in wind speed," Applied Energy, Elsevier, vol. 313(C).
    12. Aasim, & Singh, S.N. & Mohapatra, Abheejeet, 2019. "Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting," Renewable Energy, Elsevier, vol. 136(C), pages 758-768.
    13. Xie, Yuying & Li, Chaoshun & Tang, Geng & Liu, Fangjie, 2021. "A novel deep interval prediction model with adaptive interval construction strategy and automatic hyperparameter tuning for wind speed forecasting," Energy, Elsevier, vol. 216(C).
    14. Li, Dan & Jiang, Fuxin & Chen, Min & Qian, Tao, 2022. "Multi-step-ahead wind speed forecasting based on a hybrid decomposition method and temporal convolutional networks," Energy, Elsevier, vol. 238(PC).
    15. Suo, Leiming & Peng, Tian & Song, Shihao & Zhang, Chu & Wang, Yuhan & Fu, Yongyan & Nazir, Muhammad Shahzad, 2023. "Wind speed prediction by a swarm intelligence based deep learning model via signal decomposition and parameter optimization using improved chimp optimization algorithm," Energy, Elsevier, vol. 276(C).
    16. Zhang, Yagang & Pan, Guifang & Chen, Bing & Han, Jingyi & Zhao, Yuan & Zhang, Chenhong, 2020. "Short-term wind speed prediction model based on GA-ANN improved by VMD," Renewable Energy, Elsevier, vol. 156(C), pages 1373-1388.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Long, Jian & Huang, Cheng & Deng, Kai & Wan, Lei & Hu, Guihua & Zhang, Feng, 2024. "Novel hybrid data-driven modeling integrating variational modal decomposition and dual-stage self-attention model: Applied to industrial petrochemical process," Energy, Elsevier, vol. 304(C).
    2. Zhou, Zhihao & Zhang, Wei & Yao, Peng & Long, Zhenhua & Bai, Mingling & Liu, Jinfu & Yu, Daren, 2024. "More realistic degradation trend prediction for gas turbine based on factor analysis and multiple penalty mechanism loss function," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    3. Meng, Anbo & Zhang, Haitao & Dai, Zhongfu & Xian, Zikang & Xiao, Liexi & Rong, Jiayu & Li, Chen & Zhu, Jianbin & Li, Hanhong & Yin, Yiding & Liu, Jiawei & Tang, Yanshu & Zhang, Bin & Yin, Hao, 2024. "An adaptive distribution-matched recurrent network for wind power prediction using time-series distribution period division," Energy, Elsevier, vol. 299(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chu & Ji, Chunlei & Hua, Lei & Ma, Huixin & Nazir, Muhammad Shahzad & Peng, Tian, 2022. "Evolutionary quantile regression gated recurrent unit network based on variational mode decomposition, improved whale optimization algorithm for probabilistic short-term wind speed prediction," Renewable Energy, Elsevier, vol. 197(C), pages 668-682.
    2. Yang, Mao & Guo, Yunfeng & Fan, Fulin & Huang, Tao, 2024. "Two-stage correction prediction of wind power based on numerical weather prediction wind speed superposition correction and improved clustering," Energy, Elsevier, vol. 302(C).
    3. Zheng, Jingwei & Wang, Jianzhou, 2024. "Short-term wind speed forecasting based on recurrent neural networks and Levy crystal structure algorithm," Energy, Elsevier, vol. 293(C).
    4. Li, Yanhui & Sun, Kaixuan & Yao, Qi & Wang, Lin, 2024. "A dual-optimization wind speed forecasting model based on deep learning and improved dung beetle optimization algorithm," Energy, Elsevier, vol. 286(C).
    5. Liu, Xingdou & Zhang, Li & Wang, Jiangong & Zhou, Yue & Gan, Wei, 2023. "A unified multi-step wind speed forecasting framework based on numerical weather prediction grids and wind farm monitoring data," Renewable Energy, Elsevier, vol. 211(C), pages 948-963.
    6. Xiang Ying & Keke Zhao & Zhiqiang Liu & Jie Gao & Dongxiao He & Xuewei Li & Wei Xiong, 2022. "Wind Speed Prediction via Collaborative Filtering on Virtual Edge Expanding Graphs," Mathematics, MDPI, vol. 10(11), pages 1-16, June.
    7. Ai, Chunyu & He, Shan & Hu, Heng & Fan, Xiaochao & Wang, Weiqing, 2023. "Chaotic time series wind power interval prediction based on quadratic decomposition and intelligent optimization algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    8. Vadim Manusov & Pavel Matrenin & Muso Nazarov & Svetlana Beryozkina & Murodbek Safaraliev & Inga Zicmane & Anvari Ghulomzoda, 2023. "Short-Term Prediction of the Wind Speed Based on a Learning Process Control Algorithm in Isolated Power Systems," Sustainability, MDPI, vol. 15(2), pages 1-12, January.
    9. Wang, Xuguang & Li, Xiao & Su, Jie, 2023. "Distribution drift-adaptive short-term wind speed forecasting," Energy, Elsevier, vol. 273(C).
    10. Yang, Wendong & Zang, Xinyi & Wu, Chunying & Hao, Yan, 2024. "A new multi-objective ensemble wind speed forecasting system: Mixed-frequency interval-valued modeling paradigm," Energy, Elsevier, vol. 304(C).
    11. Sandra Minerva Valdivia-Bautista & José Antonio Domínguez-Navarro & Marco Pérez-Cisneros & Carlos Jesahel Vega-Gómez & Beatriz Castillo-Téllez, 2023. "Artificial Intelligence in Wind Speed Forecasting: A Review," Energies, MDPI, vol. 16(5), pages 1-28, March.
    12. Lin, Shengmao & Wang, Shu & Xu, Xuefang & Li, Ruixiong & Shi, Peiming, 2024. "GAOformer: An adaptive spatiotemporal feature fusion transformer utilizing GAT and optimizable graph matrixes for offshore wind speed prediction," Energy, Elsevier, vol. 292(C).
    13. Sun, Xiaoying & Liu, Haizhong, 2024. "Multivariate short-term wind speed prediction based on PSO-VMD-SE-ICEEMDAN two-stage decomposition and Att-S2S," Energy, Elsevier, vol. 305(C).
    14. Wang, Yun & Xu, Houhua & Song, Mengmeng & Zhang, Fan & Li, Yifen & Zhou, Shengchao & Zhang, Lingjun, 2023. "A convolutional Transformer-based truncated Gaussian density network with data denoising for wind speed forecasting," Applied Energy, Elsevier, vol. 333(C).
    15. Konstantinos Blazakis & Yiannis Katsigiannis & Georgios Stavrakakis, 2022. "One-Day-Ahead Solar Irradiation and Windspeed Forecasting with Advanced Deep Learning Techniques," Energies, MDPI, vol. 15(12), pages 1-25, June.
    16. Li, Wenzhe & Jia, Xiaodong & Li, Xiang & Wang, Yinglu & Lee, Jay, 2021. "A Markov model for short term wind speed prediction by integrating the wind acceleration information," Renewable Energy, Elsevier, vol. 164(C), pages 242-253.
    17. Ke Zhang & Xiao Li & Jie Su, 2022. "Variable Support Segment-Based Short-Term Wind Speed Forecasting," Energies, MDPI, vol. 15(11), pages 1-18, June.
    18. Liu, Yongqi & Qin, Hui & Zhang, Zhendong & Pei, Shaoqian & Jiang, Zhiqiang & Feng, Zhongkai & Zhou, Jianzhong, 2020. "Probabilistic spatiotemporal wind speed forecasting based on a variational Bayesian deep learning model," Applied Energy, Elsevier, vol. 260(C).
    19. Yang, Mao & Guo, Yunfeng & Huang, Yutong, 2023. "Wind power ultra-short-term prediction method based on NWP wind speed correction and double clustering division of transitional weather process," Energy, Elsevier, vol. 282(C).
    20. Zheng, Xidong & Zhou, Sheng & Jin, Tao, 2023. "A new machine learning-based approach for cross-region coupled wind-storage integrated systems identification considering electricity demand response and data integration: A new provincial perspective," Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923016124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.