IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v115y2018icp382-390.html
   My bibliography  Save this article

Wind energy plants repowering potential in Italy: technical-economic assessment

Author

Listed:
  • Serri, Laura
  • Lembo, Ettore
  • Airoldi, Davide
  • Gelli, Camilla
  • Beccarello, Massimo

Abstract

In many countries, pioneers in wind plants installation during the last decades of XX century, there is a progressive shortage of land based sites suitable for new wind farms and, at the same time, many installed wind turbines are reaching the end-of-life. Three options can be considered for a wind plant at the end-of-life: the decommissioning, the revamping and the repowering. The main advantages of the repowering option are the better exploitation of wind resource, the reduction of the wind turbine number and the prevention of further “virgin” land consumption. However, there are some issues that may affect the success of repowering initiatives: the significantly high investment costs and long and the complex authorization process. In this frame, in order to support both operators and decision-makers, RSE undertook a research activity concerning the evaluation of the wind repowering potential in Italy. The main objectives of this work were to understand the amount, the features and the geographical distribution of wind capacity that will reach the end-of-life in 2020 and also to develop repowering scenarios and to evaluate their technical-economic sustainability. A three steps methodology was designed and applied for the evaluation of the national repowering potential.

Suggested Citation

  • Serri, Laura & Lembo, Ettore & Airoldi, Davide & Gelli, Camilla & Beccarello, Massimo, 2018. "Wind energy plants repowering potential in Italy: technical-economic assessment," Renewable Energy, Elsevier, vol. 115(C), pages 382-390.
  • Handle: RePEc:eee:renene:v:115:y:2018:i:c:p:382-390
    DOI: 10.1016/j.renene.2017.08.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117307863
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.08.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Bona, Jéssica Ceolin & Ferreira, Joao Carlos Espindola & Ordoñez Duran, Julian Fernando, 2021. "Analysis of scenarios for repowering wind farms in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Francisco Haces-Fernandez, 2021. "Higher Wind: Highlighted Expansion Opportunities to Repower Wind Energy," Energies, MDPI, vol. 14(22), pages 1-19, November.
    3. Giacomo Di Foggia & Massimo Beccarello & Marco Borgarello & Francesca Bazzocchi & Stefano Moscarelli, 2022. "Market-Based Instruments to Promote Energy Efficiency: Insights from the Italian Case," Energies, MDPI, vol. 15(20), pages 1-16, October.
    4. Jung, Christopher & Schindler, Dirk, 2018. "On the inter-annual variability of wind energy generation – A case study from Germany," Applied Energy, Elsevier, vol. 230(C), pages 845-854.
    5. de Simón-Martín, Miguel & Ciria-Garcés, Tomás & Rosales-Asensio, Enrique & González-Martínez, Alberto, 2022. "Multi-dimensional barrier identification for wind farm repowering in Spain through an expert judgment approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    6. Katarzyna Chudy-Laskowska & Tomasz Pisula & Mirosław Liana & László Vasa, 2020. "Taxonomic Analysis of the Diversity in the Level of Wind Energy Development in European Union Countries," Energies, MDPI, vol. 13(17), pages 1-21, August.
    7. Leite, Gustavo de Novaes Pires & Weschenfelder, Franciele & Farias, João Gabriel de & Kamal Ahmad, Muhammad, 2022. "Economic and sensitivity analysis on wind farm end-of-life strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    8. Khan, Mehtab Ahmad & Javed, Adeel & Shakir, Sehar & Syed, Abdul Haseeb, 2021. "Optimization of a wind farm by coupled actuator disk and mesoscale models to mitigate neighboring wind farm wake interference from repowering perspective," Applied Energy, Elsevier, vol. 298(C).
    9. Francisco Haces-Fernandez, 2020. "GoWInD: Wind Energy Spatiotemporal Assessment and Characterization of End-of-Life Activities," Energies, MDPI, vol. 13(22), pages 1-20, November.
    10. Martínez, E. & Latorre-Biel, J.I. & Jiménez, E. & Sanz, F. & Blanco, J., 2018. "Life cycle assessment of a wind farm repowering process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 260-271.
    11. Mohammadzadeh Bina, Saeid & Jalilinasrabady, Saeid & Fujii, Hikari & Farabi-Asl, Hadi, 2018. "A comprehensive approach for wind power plant potential assessment, application to northwestern Iran," Energy, Elsevier, vol. 164(C), pages 344-358.
    12. Davide Astolfi & Raymond Byrne & Francesco Castellani, 2020. "Analysis of Wind Turbine Aging through Operation Curves," Energies, MDPI, vol. 13(21), pages 1-21, October.
    13. Syed, Abdul Haseeb & Javed, Adeel & Asim Feroz, Raja M. & Calhoun, Ronald, 2020. "Partial repowering analysis of a wind farm by turbine hub height variation to mitigate neighboring wind farm wake interference using mesoscale simulations," Applied Energy, Elsevier, vol. 268(C).
    14. Luis M. Abadie & Nestor Goicoechea, 2021. "Old Wind Farm Life Extension vs. Full Repowering: A Review of Economic Issues and a Stochastic Application for Spain," Energies, MDPI, vol. 14(12), pages 1-24, June.
    15. Isabel C. Gil-García & Ana Fernández-Guillamón & M. Socorro García-Cascales & Angel Molina-García, 2021. "A Multi-Factorial Review of Repowering Wind Generation Strategies," Energies, MDPI, vol. 14(19), pages 1-25, October.
    16. Unnewehr, Jan Frederick & Jalbout, Eddy & Jung, Christopher & Schindler, Dirk & Weidlich, Anke, 2021. "Getting more with less? Why repowering onshore wind farms does not always lead to more wind power generation – A German case study," Renewable Energy, Elsevier, vol. 180(C), pages 245-257.
    17. Leporini, Mariella & Marchetti, Barbara & Corvaro, Francesco & Polonara, Fabio, 2019. "Reconversion of offshore oil and gas platforms into renewable energy sites production: Assessment of different scenarios," Renewable Energy, Elsevier, vol. 135(C), pages 1121-1132.
    18. Gianluca Pepe & Federica Mezzani & Antonio Carcaterra & Luca Cedola & Franco Rispoli, 2020. "Variational Control Approach to Energy Extraction from a Fluid Flow," Energies, MDPI, vol. 13(18), pages 1-20, September.
    19. Ateekh Ur Rehman & Mustufa Haider Abidi & Usama Umer & Yusuf Siraj Usmani, 2019. "Multi-Criteria Decision-Making Approach for Selecting Wind Energy Power Plant Locations," Sustainability, MDPI, vol. 11(21), pages 1-20, November.
    20. Qiang Deng & Michal Slaný & Huani Zhang & Xuefan Gu & Yongfei Li & Weichao Du & Gang Chen, 2021. "Synthesis of Alkyl Aliphatic Hydrazine and Application in Crude Oil as Flow Improvers," Energies, MDPI, vol. 14(15), pages 1-11, August.
    21. Doukas, H. & Arsenopoulos, A. & Lazoglou, M. & Nikas, A. & Flamos, A., 2022. "Wind repowering: Unveiling a hidden asset," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    22. Alberto Benato & Anna Stoppato, 2019. "An Experimental Investigation of a Novel Low-Cost Photovoltaic Panel Active Cooling System," Energies, MDPI, vol. 12(8), pages 1-24, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:115:y:2018:i:c:p:382-390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.