Design and characterization of a self-excited unibody piezoelectric energy harvester by utilizing rotationally induced pendulation of along-groove iron balls
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.129467
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Liu, Lei & He, Lipeng & Liu, Xuejin & Han, Yuhang & Sun, Baoyu & Cheng, Guangming, 2022. "Design and experiment of a low frequency non-contact rotary piezoelectric energy harvester excited by magnetic coupling," Energy, Elsevier, vol. 258(C).
- Saleh Alhumaid & Daniel Hess & Rasim Guldiken, 2022. "A Noncontact Magneto–Piezo Harvester-Based Vehicle Regenerative Suspension System: An Experimental Study," Energies, MDPI, vol. 15(12), pages 1-17, June.
- Fu, Hailing & Yeatman, Eric M., 2017. "A methodology for low-speed broadband rotational energy harvesting using piezoelectric transduction and frequency up-conversion," Energy, Elsevier, vol. 125(C), pages 152-161.
- Kan, Junwu & Wang, Jin & Meng, Fanxu & He, Chenyang & Li, Shengjie & Wang, Shuyun & Zhang, Zhonghua, 2023. "A downwind-vibrating piezoelectric energy harvester under the disturbance of a downstream baffle," Energy, Elsevier, vol. 262(PA).
- Zahid Kausar, A.S.M. & Reza, Ahmed Wasif & Saleh, Mashad Uddin & Ramiah, Harikrishnan, 2014. "Energizing wireless sensor networks by energy harvesting systems: Scopes, challenges and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 973-989.
- Wang, Jian-Xu & Su, Wen-Bin & Li, Ji-Chao & Wang, Chun-Ming, 2022. "A rotational piezoelectric energy harvester based on trapezoid beam: Simulation and experiment," Renewable Energy, Elsevier, vol. 184(C), pages 619-626.
- Zhao, Yuhao & Yan, Yusen & Du, Jingtao & Liu, Yang, 2023. "Broadband vibration energy harvest of an elastic beam by employing a type of intelligent elastic device," Energy, Elsevier, vol. 273(C).
- Zuo, Jianyong & Dong, Liwei & Yang, Fan & Guo, Ziheng & Wang, Tianpeng & Zuo, Lei, 2023. "Energy harvesting solutions for railway transportation: A comprehensive review," Renewable Energy, Elsevier, vol. 202(C), pages 56-87.
- Kan, Junwu & Fu, Jiawei & Wang, Shuyun & Zhang, Zhonghua & Chen, Song & Yang, Can, 2017. "Study on a piezo-disk energy harvester excited by rotary magnets," Energy, Elsevier, vol. 122(C), pages 62-69.
- Azizi, Saber & Ghodsi, Ali & Jafari, Hamid & Ghazavi, Mohammad Reza, 2016. "A conceptual study on the dynamics of a piezoelectric MEMS (Micro Electro Mechanical System) energy harvester," Energy, Elsevier, vol. 96(C), pages 495-506.
- Zhou, Zhiyong & Qin, Weiyang & Zhu, Pei, 2017. "Harvesting acoustic energy by coherence resonance of a bi-stable piezoelectric harvester," Energy, Elsevier, vol. 126(C), pages 527-534.
- Wang, Shuyun & Yang, Zemeng & Kan, Junwu & Chen, Song & Chai, Chaohui & Zhang, Zhonghua, 2021. "Design and characterization of an amplitude-limiting rotational piezoelectric energy harvester excited by a radially dragged magnetic force," Renewable Energy, Elsevier, vol. 177(C), pages 1382-1393.
- Ghomian, Taher & Mehraeen, Shahab, 2019. "Survey of energy scavenging for wearable and implantable devices," Energy, Elsevier, vol. 178(C), pages 33-49.
- Harb, Adnan, 2011. "Energy harvesting: State-of-the-art," Renewable Energy, Elsevier, vol. 36(10), pages 2641-2654.
- Zhang, Liufeng & Zhang, Feibin & Qin, Zhaoye & Han, Qinkai & Wang, Tianyang & Chu, Fulei, 2022. "Piezoelectric energy harvester for rolling bearings with capability of self-powered condition monitoring," Energy, Elsevier, vol. 238(PB).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dang, Shuai & Hou, Chengwei & Shan, Xiaobiao & Sui, Guangdong & Zhang, Xiaofan, 2024. "A novel T-shaped beam bistable piezoelectric energy harvester with a moving magnet," Energy, Elsevier, vol. 300(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Li & Kan, Junwu & Lin, Shijie & Liao, Weilin & Yang, Jianwen & Liu, Panpan & Wang, Shuyun & Zhang, Zhonghua, 2024. "Design and performance evaluation of a pendulous piezoelectric rotational energy harvester through magnetic plucking of a fan-shaped hanging composite plate," Renewable Energy, Elsevier, vol. 222(C).
- Wang, Shuyun & Yang, Zemeng & Kan, Junwu & Chen, Song & Chai, Chaohui & Zhang, Zhonghua, 2021. "Design and characterization of an amplitude-limiting rotational piezoelectric energy harvester excited by a radially dragged magnetic force," Renewable Energy, Elsevier, vol. 177(C), pages 1382-1393.
- Kan, Junwu & Fu, Jiawei & Wang, Shuyun & Zhang, Zhonghua & Chen, Song & Yang, Can, 2017. "Study on a piezo-disk energy harvester excited by rotary magnets," Energy, Elsevier, vol. 122(C), pages 62-69.
- Qi, Lu, 2019. "Energy harvesting properties of the functionally graded flexoelectric microbeam energy harvesters," Energy, Elsevier, vol. 171(C), pages 721-730.
- Yu, Gang & He, Lipeng & Wang, Hongxin & Sun, Lei & Zhang, Zhonghua & Cheng, Guangming, 2023. "Research of rotating piezoelectric energy harvester for automotive motion," Renewable Energy, Elsevier, vol. 211(C), pages 484-493.
- Zou, Hong-Xiang & Zhu, Quan-Wei & He, Jia-Yi & Zhao, Lin-Chuan & Wei, Ke-Xiang & Zhang, Wen-Ming & Du, Rong-Hua & Liu, Sheng, 2024. "Energy harvesting floor using sustained-release regulation mechanism for self-powered traffic management," Applied Energy, Elsevier, vol. 353(PA).
- Kan, Junwu & Wang, Jin & Meng, Fanxu & He, Chenyang & Li, Shengjie & Wang, Shuyun & Zhang, Zhonghua, 2023. "A downwind-vibrating piezoelectric energy harvester under the disturbance of a downstream baffle," Energy, Elsevier, vol. 262(PA).
- Zhang, Ying & Wang, Wei & Xie, Junxiao & Lei, Yaguo & Cao, Junyi & Xu, Ye & Bader, Sebastian & Bowen, Chris & Oelmann, Bengt, 2022. "Enhanced variable reluctance energy harvesting for self-powered monitoring," Applied Energy, Elsevier, vol. 321(C).
- Cha, Youngsu & Chae, Woojin & Kim, Hubert & Walcott, Horace & Peterson, Sean D. & Porfiri, Maurizio, 2016. "Energy harvesting from a piezoelectric biomimetic fish tail," Renewable Energy, Elsevier, vol. 86(C), pages 449-458.
- Madinei, H. & Haddad Khodaparast, H. & Friswell, M.I. & Adhikari, S., 2018. "Minimising the effects of manufacturing uncertainties in MEMS Energy harvesters," Energy, Elsevier, vol. 149(C), pages 990-999.
- Zhao, Lin-Chuan & Zou, Hong-Xiang & Yan, Ge & Liu, Feng-Rui & Tan, Ting & Zhang, Wen-Ming & Peng, Zhi-Ke & Meng, Guang, 2019. "A water-proof magnetically coupled piezoelectric-electromagnetic hybrid wind energy harvester," Applied Energy, Elsevier, vol. 239(C), pages 735-746.
- Wang, Jian-Xu & Su, Wen-Bin & Li, Ji-Chao & Wang, Chun-Ming, 2022. "A rotational piezoelectric energy harvester based on trapezoid beam: Simulation and experiment," Renewable Energy, Elsevier, vol. 184(C), pages 619-626.
- Yar, Adem, 2021. "High performance of multi-layered triboelectric nanogenerators for mechanical energy harvesting," Energy, Elsevier, vol. 222(C).
- Yang, Feng & Du, Lin & Chen, Weigen & Li, Jian & Wang, Youyuan & Wang, Disheng, 2017. "Hybrid energy harvesting for condition monitoring sensors in power grids," Energy, Elsevier, vol. 118(C), pages 435-445.
- Wang, K.F. & Wang, B.L., 2018. "Energy gathering performance of micro/nanoscale circular energy harvesters based on flexoelectric effect," Energy, Elsevier, vol. 149(C), pages 597-606.
- Piotr Micek & Dariusz Grzybek, 2022. "Impact of a Connection Structure of Macro Fiber Composite Patches on Energy Storage in Piezoelectric Energy Harvesting from a Rotating Shaft," Energies, MDPI, vol. 15(17), pages 1-15, August.
- Chen, Lin & Liao, Xin & Sun, Beibei & Zhang, Ning & Wu, Jianwei, 2022. "A numerical-experimental dynamic analysis of high-efficiency and broadband bistable energy harvester with self-decreasing potential barrier effect," Applied Energy, Elsevier, vol. 317(C).
- Eswaran, U. & Ramiah, H. & Kanesan, J. & Reza, A.W., 2015. "Energy saving power amplifier design methodologies for mobile wireless communications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1721-1727.
- Helseth, L.E. & Guo, X.D., 2016. "Fluorinated ethylene propylene thin film for water droplet energy harvesting," Renewable Energy, Elsevier, vol. 99(C), pages 845-851.
- Alluri, Nagamalleswara Rao & Selvarajan, Sophia & Chandrasekhar, Arunkumar & Saravanakumar, Balasubramaniam & Lee, Gae Myoung & Jeong, Ji Hyun & Kim, Sang-Jae, 2017. "Worm structure piezoelectric energy harvester using ionotropic gelation of barium titanate-calcium alginate composite," Energy, Elsevier, vol. 118(C), pages 1146-1155.
More about this item
Keywords
Piezoelectric transduction; Rotational energy harvester; Self-excited technique; Rotationally-induced pendulation; Magnetic coupling;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:285:y:2023:i:c:s036054422302861x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.