IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v267y2023ics0360544222034107.html
   My bibliography  Save this article

An enhanced super-long gravity heat pipe geothermal system: Conceptual design and numerical study

Author

Listed:
  • Li, Zhibin
  • Huang, Wenbo
  • Chen, Juanwen
  • Cen, Jiwen
  • Cao, Wenjiong
  • Li, Feng
  • Jiang, Fangming

Abstract

Recently, it was reported a novel method of deep geothermal energy exploitation by using the super-long gravity heat pipe (SLGHP) in a single-well geothermal system. However, the low heat transfer rate from the geothermal formation outside the heat pipe is one main factor limiting the heat extraction rate of the SLGHP system. In this respect, the concept of a novel enhanced super-long heat pipe system (ESLHPS) is proposed, which encompasses a super-long gravity heat pipe and a heat transfer enhanced region. The heat transfer enhanced region, built around the evaporation section of the heat pipe, features near-well fracture reservoir filled with high thermal conductivity phase change composite. The phase change composite remains as a semiliquid mixture during operation, eliminating the thermal contact resistance between the heat pipe and the reservoir. To evaluate the thermal performance of the proposed system, it is employed a numerical model, and the key parameters including those of the heat transfer enhanced region are carefully analyzed. In addition, an insulation layer is set around the heat pipe to make a specific adiabatic section. It is found that the heat transfer enhanced region can significantly improve the thermal performance of the SLGHP system. The overall thermal performance of ESLHPS is found to be dependent on the thermal conductivity, length and radius of the heat transfer enhanced region. The insulation layer can effectively reduce the heat loss of ESLHPS, and the thermal insulation shows the best performance when its length just equals the length of heat pipe minus the optimum length of the heat transfer enhanced region. In addition, the design procedure for the ESLHPS is also proposed, and it leads to a realistic strategy for the design of single-well SLGHP geothermal systems. The results obtained in this study under idealized conditions offer guidance towards the optimization of the system design.

Suggested Citation

  • Li, Zhibin & Huang, Wenbo & Chen, Juanwen & Cen, Jiwen & Cao, Wenjiong & Li, Feng & Jiang, Fangming, 2023. "An enhanced super-long gravity heat pipe geothermal system: Conceptual design and numerical study," Energy, Elsevier, vol. 267(C).
  • Handle: RePEc:eee:energy:v:267:y:2023:i:c:s0360544222034107
    DOI: 10.1016/j.energy.2022.126524
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222034107
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126524?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Wenbo & Chen, Juanwen & Cen, Jiwen & Cao, Wenjiong & Li, Zhibin & Li, Feng & Jiang, Fangming, 2022. "Heat extraction from hot dry rock by super-long gravity heat pipe: Effect of key parameters," Energy, Elsevier, vol. 248(C).
    2. Baek, Haein & Chung, Ji-Bum & Yun, Gi Woong, 2021. "Differences in public perceptions of geothermal energy based on EGS technology in Korea after the Pohang earthquake: National vs. local," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    3. Li, Ji & Xu, Wei & Li, Jianfeng & Huang, Shuai & Li, Zhao & Qiao, Biao & Yang, Chun & Sun, Deyu & Zhang, Guangqiu, 2021. "Heat extraction model and characteristics of coaxial deep borehole heat exchanger," Renewable Energy, Elsevier, vol. 169(C), pages 738-751.
    4. Falcone, Gioia & Liu, Xiaolei & Okech, Roy Radido & Seyidov, Ferid & Teodoriu, Catalin, 2018. "Assessment of deep geothermal energy exploitation methods: The need for novel single-well solutions," Energy, Elsevier, vol. 160(C), pages 54-63.
    5. Yang, H. & Cui, P. & Fang, Z., 2010. "Vertical-borehole ground-coupled heat pumps: A review of models and systems," Applied Energy, Elsevier, vol. 87(1), pages 16-27, January.
    6. Huang, Yibin & Zhang, Yanjun & Xie, Yangyang & Zhang, Yu & Gao, Xuefeng & Ma, Jingchen, 2020. "Field test and numerical investigation on deep coaxial borehole heat exchanger based on distributed optical fiber temperature sensor," Energy, Elsevier, vol. 210(C).
    7. Song, Xianzhi & Shi, Yu & Li, Gensheng & Shen, Zhonghou & Hu, Xiaodong & Lyu, Zehao & Zheng, Rui & Wang, Gaosheng, 2018. "Numerical analysis of the heat production performance of a closed loop geothermal system," Renewable Energy, Elsevier, vol. 120(C), pages 365-378.
    8. Yang, Kun & Zhu, Neng & Li, Yongzhao & Du, Na, 2021. "Effect of parameters on the melting performance of triplex tube heat exchanger incorporating phase change material," Renewable Energy, Elsevier, vol. 174(C), pages 359-371.
    9. Hu, Xincheng & Banks, Jonathan & Guo, Yunting & Liu, Wei Victor, 2021. "Retrofitting abandoned petroleum wells as doublet deep borehole heat exchangers for geothermal energy production—a numerical investigation," Renewable Energy, Elsevier, vol. 176(C), pages 115-134.
    10. Yildirim, Nurdan & Parmanto, Slamet & Akkurt, Gulden Gokcen, 2019. "Thermodynamic assessment of downhole heat exchangers for geothermal power generation," Renewable Energy, Elsevier, vol. 141(C), pages 1080-1091.
    11. Liao, Youqiang & Sun, Xiaohui & Sun, Baojiang & Wang, Zhiyuan & Wang, Jintang & Wang, Xuerui, 2021. "Geothermal exploitation and electricity generation from multibranch U-shaped well–enhanced geothermal system," Renewable Energy, Elsevier, vol. 163(C), pages 2178-2189.
    12. Yang, Weibo & Xu, Rui & Wang, Feng & Chen, Shikun, 2020. "Experimental and numerical investigations on the thermal performance of a horizontal spiral-coil ground heat exchanger," Renewable Energy, Elsevier, vol. 147(P1), pages 979-995.
    13. Wang, Gaosheng & Song, Xianzhi & Shi, Yu & Yang, Ruiyue & Yulong, Feixue & Zheng, Rui & Li, Jiacheng, 2021. "Heat extraction analysis of a novel multilateral-well coaxial closed-loop geothermal system," Renewable Energy, Elsevier, vol. 163(C), pages 974-986.
    14. Song, Weiqiang & Wang, Chunguang & Du, Yukun & Shen, Baotang & Chen, Shaojie & Jiang, Yujing, 2020. "Comparative analysis on the heat transfer efficiency of supercritical CO2 and H2O in the production well of enhanced geothermal system," Energy, Elsevier, vol. 205(C).
    15. Chen, Juanwen & Huang, Wenbo & Cen, Jiwen & Cao, Wenjiong & Li, Zhibin & Li, Feng & Jiang, Fangming, 2022. "Heat extraction from hot dry rock by super-long gravity heat pipe: Selection of working fluid," Energy, Elsevier, vol. 255(C).
    16. Dai, Chuanshan & Li, Jiashu & Shi, Yu & Zeng, Long & Lei, Haiyan, 2019. "An experiment on heat extraction from a deep geothermal well using a downhole coaxial open loop design," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    17. Gao, Yuan & Zheng, Qiye & Jonsson, Jacob C. & Lubner, Sean & Curcija, Charlie & Fernandes, Luis & Kaur, Sumanjeet & Kohler, Christian, 2021. "Parametric study of solid-solid translucent phase change materials in building windows," Applied Energy, Elsevier, vol. 301(C).
    18. Song, Xianzhi & Shi, Yu & Li, Gensheng & Yang, Ruiyue & Wang, Gaosheng & Zheng, Rui & Li, Jiacheng & Lyu, Zehao, 2018. "Numerical simulation of heat extraction performance in enhanced geothermal system with multilateral wells," Applied Energy, Elsevier, vol. 218(C), pages 325-337.
    19. Huang, Wenbo & Cao, Wenjiong & Jiang, Fangming, 2018. "A novel single-well geothermal system for hot dry rock geothermal energy exploitation," Energy, Elsevier, vol. 162(C), pages 630-644.
    20. Huang, Wenbo & Cen, Jiwen & Chen, Juanwen & Cao, Wenjiong & Li, Zhibin & Li, Feng & Jiang, Fangming, 2022. "Heat extraction from hot dry rock by super-long gravity heat pipe: A field test," Energy, Elsevier, vol. 247(C).
    21. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu & Zhang, Haijun, 2020. "Numerical simulation study on the heat extraction performance of multi-well injection enhanced geothermal system," Renewable Energy, Elsevier, vol. 151(C), pages 782-795.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anand, R.S. & Li, Ang & Huang, Wenbo & Chen, Juanwen & Li, Zhibin & Ma, Qingshan & Jiang, Fangming, 2024. "Super-long gravity heat pipe for geothermal energy exploitation - A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    2. Deng, Jiaolong & Guan, Chaoran & Wang, Tianshi & Liu, Xiaojing & Chai, Xiang, 2024. "Evaluation of start-up characteristics for heat pipe-cooled nuclear reactor coupled with recuperated open-air brayton cycle using hardware-in-the-loop," Energy, Elsevier, vol. 301(C).
    3. Chen, Juanwen & Li, Zhibin & Huang, Wenbo & Ma, Qingshan & Li, Ang & Wang, Bin & Sun, Hongtao & Jiang, Fangming, 2024. "Super-long gravity heat pipe geothermal space heating system: A practical case in Taiyuan, China," Energy, Elsevier, vol. 299(C).
    4. Szturgulewski, Kacper & Głuch, Jerzy & Drosińska-Komor, Marta & Ziółkowski, Paweł & Gardzilewicz, Andrzej & Brzezińska-Gołębiewska, Katarzyna, 2024. "Hybrid geothermal-fossil power cycle analysis in a Polish setting with a focus on off-design performance and CO2 emissions reductions," Energy, Elsevier, vol. 299(C).
    5. Qiao, Mingzheng & Jing, Zefeng & Feng, Chenchen & Li, Minghui & Chen, Cheng & Zou, Xupeng & Zhou, Yujuan, 2024. "Review on heat extraction systems of hot dry rock: Classifications, benefits, limitations, research status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiao, Mingzheng & Jing, Zefeng & Feng, Chenchen & Li, Minghui & Chen, Cheng & Zou, Xupeng & Zhou, Yujuan, 2024. "Review on heat extraction systems of hot dry rock: Classifications, benefits, limitations, research status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    2. Anand, R.S. & Li, Ang & Huang, Wenbo & Chen, Juanwen & Li, Zhibin & Ma, Qingshan & Jiang, Fangming, 2024. "Super-long gravity heat pipe for geothermal energy exploitation - A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    3. Feng Li & Juanwen Chen & Jiwen Cen & Wenbo Huang & Zhibin Li & Qingshan Ma & Fangming Jiang, 2023. "Two-Phase Flow Visualization and Heat Transfer Characteristics Analysis in Ultra-Long Gravity Heat Pipe," Energies, MDPI, vol. 16(12), pages 1-16, June.
    4. Huang, Shuai & Zhu, Ke & Dong, Jiankai & Li, Ji & Kong, Weizheng & Jiang, Yiqiang & Fang, Zhaohong, 2022. "Heat transfer performance of deep borehole heat exchanger with different operation modes," Renewable Energy, Elsevier, vol. 193(C), pages 645-656.
    5. Yu Zhai & Xu Zhao & Guanghui Xue & Zhifeng Dong, 2023. "Study on Heat Transfer Performance and Parameter Improvement of Gravity-Assisted Heat Pipe Heat Transfer Unit for Waste Heat Recovery from Mine Return Air," Energies, MDPI, vol. 16(17), pages 1-17, August.
    6. Linkai Li & Xiao Guo & Ming Zhou & Gang Xiang & Ning Zhang & Yue Wang & Shengyuan Wang & Arnold Landjobo Pagou, 2021. "The Investigation of Fracture Networks on Heat Extraction Performance for an Enhanced Geothermal System," Energies, MDPI, vol. 14(6), pages 1-18, March.
    7. Chen, Juanwen & Li, Zhibin & Huang, Wenbo & Ma, Qingshan & Li, Ang & Wang, Bin & Sun, Hongtao & Jiang, Fangming, 2024. "Super-long gravity heat pipe geothermal space heating system: A practical case in Taiyuan, China," Energy, Elsevier, vol. 299(C).
    8. Pokhrel, Sajjan & Sasmito, Agus P. & Sainoki, Atsushi & Tosha, Toshiyuki & Tanaka, Tatsuya & Nagai, Chiaki & Ghoreishi-Madiseh, Seyed Ali, 2022. "Field-scale experimental and numerical analysis of a downhole coaxial heat exchanger for geothermal energy production," Renewable Energy, Elsevier, vol. 182(C), pages 521-535.
    9. Xie, Jingxuan & Wang, Jiansheng, 2022. "Compatibility investigation and techno-economic performance optimization of whole geothermal power generation system," Applied Energy, Elsevier, vol. 328(C).
    10. Guo, Tiankui & Zhang, Yuelong & He, Jiayuan & Gong, Facheng & Chen, Ming & Liu, Xiaoqiang, 2021. "Research on geothermal development model of abandoned high temperature oil reservoir in North China oilfield," Renewable Energy, Elsevier, vol. 177(C), pages 1-12.
    11. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu & Zhang, Haijun, 2020. "Numerical simulation study on the heat extraction performance of multi-well injection enhanced geothermal system," Renewable Energy, Elsevier, vol. 151(C), pages 782-795.
    12. Li, Shijie & Liu, Jie & Huang, Wanying & Zhang, Chenghang, 2024. "Numerical simulation of the thermo-hydro-chemical coupling in enhanced geothermal systems: Impact of SiO2 dissolution/precipitation in matrix and fractures," Energy, Elsevier, vol. 290(C).
    13. Huang, Wenbo & Chen, Juanwen & Cen, Jiwen & Cao, Wenjiong & Li, Zhibin & Li, Feng & Jiang, Fangming, 2022. "Heat extraction from hot dry rock by super-long gravity heat pipe: Effect of key parameters," Energy, Elsevier, vol. 248(C).
    14. Zhen Zhao & Guangxiong Qin & Huijuan Chen & Linchao Yang & Songhe Geng & Ronghua Wen & Liang Zhang, 2022. "Numerical Simulation and Economic Evaluation of Wellbore Self-Circulation for Heat Extraction Using Cluster Horizontal Wells," Energies, MDPI, vol. 15(9), pages 1-26, April.
    15. Yu, Han & Xu, Tianfu & Yuan, Yilong & Gherardi, Fabrizio & Feng, Bo & Jiang, Zhenjiao & Hu, Zixu, 2021. "Enhanced heat extraction for deep borehole heat exchanger through the jet grouting method using high thermal conductivity material," Renewable Energy, Elsevier, vol. 177(C), pages 1102-1115.
    16. Theo Renaud & Lehua Pan & Hannah Doran & Gioia Falcone & Patrick G. Verdin, 2021. "Numerical Analysis of Enhanced Conductive Deep Borehole Heat Exchangers," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
    17. Huang, Shuai & Li, Jiqin & Gao, Hu & Dong, Jiankai & Jiang, Yiqiang, 2024. "Thermal performance of medium-deep U-type borehole heat exchanger based on a novel numerical model considering groundwater seepage," Renewable Energy, Elsevier, vol. 222(C).
    18. Huang, Wenbo & Cen, Jiwen & Chen, Juanwen & Cao, Wenjiong & Li, Zhibin & Li, Feng & Jiang, Fangming, 2022. "Heat extraction from hot dry rock by super-long gravity heat pipe: A field test," Energy, Elsevier, vol. 247(C).
    19. Theo Renaud & Patrick G. Verdin & Gioia Falcone, 2020. "Conjugated Numerical Approach for Modelling DBHE in High Geothermal Gradient Environments," Energies, MDPI, vol. 13(22), pages 1-18, November.
    20. Chen, Juanwen & Huang, Wenbo & Cen, Jiwen & Cao, Wenjiong & Li, Zhibin & Li, Feng & Jiang, Fangming, 2022. "Heat extraction from hot dry rock by super-long gravity heat pipe: Selection of working fluid," Energy, Elsevier, vol. 255(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:267:y:2023:i:c:s0360544222034107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.