IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i6p1961-d766292.html
   My bibliography  Save this article

Assessing the Hybridization of an Existing Geothermal Plant by Coupling a CSP System for Increasing Power Generation

Author

Listed:
  • Yanara Tranamil-Maripe

    (Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago 8370456, Chile
    Current address: Departamento de Energías Sostenibles, Ministerio de Energía, Santiago 8340518, Chile.)

  • José M. Cardemil

    (Departamento de Ingeniería Mecánica y Metalúrgica, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile)

  • Rodrigo Escobar

    (Departamento de Ingeniería Mecánica y Metalúrgica, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
    Centro del Desierto de Atacama, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile)

  • Diego Morata

    (Departamento de Geología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago 8370456, Chile
    Centro de Excelencia en Geotermia de los Andes (CEGA), Santiago 8370456, Chile)

  • Cristóbal Sarmiento-Laurel

    (School of Industrial Engineering, Universidad Diego Portales, Santiago 8370191, Chile)

Abstract

Concentrated Solar Power (CSP) and geothermal energy systems are outlined as two of the most promising technologies for sustainable and reliable electricity generation. Several studies in the technical literature have pointed out that the hybridization of solar and geothermal energy sources could lead to a reduction of the levelized cost of energy (LCOE) of geothermal systems, as well as improving the capacity factor of CSP systems. However, the technical literature shows that the integration of solar thermal collectors does not present a positive impact in all scenarios analyzed. The present study aims to further analyze the competitiveness of the hybridization of solar and geothermal systems under high irradiation conditions such as those observed in the Andean region in northern Chile. The evaluation was carried out by coupling a thermodynamic model in Engineering Equation Solver (EES) with a solar thermal model in the System Advisor Model (SAM). The assessment considers the configuration of an existing geothermal plant, considering the design constraints associated with the actual operating conditions of the plant. The analysis is based on an energy and exergy assessment, allowing us to identify the efficiency of the subsystems introduced for the hybridization and assess the competitiveness of the hybrid schemes by an economic assessment in terms of the LCOE. The results show that the hybrid schemes allow a reduction of the LCOE of a geothermal stand-alone plant by about 10 USD / MWh , increasing the competitiveness of the geothermal system. However, a large variation on such a reduction is observed depending on the size of the solar field and the storage tank of the solar system.

Suggested Citation

  • Yanara Tranamil-Maripe & José M. Cardemil & Rodrigo Escobar & Diego Morata & Cristóbal Sarmiento-Laurel, 2022. "Assessing the Hybridization of an Existing Geothermal Plant by Coupling a CSP System for Increasing Power Generation," Energies, MDPI, vol. 15(6), pages 1-28, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:1961-:d:766292
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/6/1961/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/6/1961/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Monia Procesi, 2014. "Geothermal Potential Evaluation for Northern Chile and Suggestions for New Energy Plans," Energies, MDPI, vol. 7(8), pages 1-16, August.
    2. Li, Kewen & Bian, Huiyuan & Liu, Changwei & Zhang, Danfeng & Yang, Yanan, 2015. "Comparison of geothermal with solar and wind power generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1464-1474.
    3. Ayub, Mohammad & Mitsos, Alexander & Ghasemi, Hadi, 2015. "Thermo-economic analysis of a hybrid solar-binary geothermal power plant," Energy, Elsevier, vol. 87(C), pages 326-335.
    4. Ciani Bassetti, Martina & Consoli, Daniele & Manente, Giovanni & Lazzaretto, Andrea, 2018. "Design and off-design models of a hybrid geothermal-solar power plant enhanced by a thermal storage," Renewable Energy, Elsevier, vol. 128(PB), pages 460-472.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Szturgulewski, Kacper & Głuch, Jerzy & Drosińska-Komor, Marta & Ziółkowski, Paweł & Gardzilewicz, Andrzej & Brzezińska-Gołębiewska, Katarzyna, 2024. "Hybrid geothermal-fossil power cycle analysis in a Polish setting with a focus on off-design performance and CO2 emissions reductions," Energy, Elsevier, vol. 299(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boukelia, T.E. & Arslan, O. & Djimli, S. & Kabar, Y., 2023. "ORC fluids selection for a bottoming binary geothermal power plant integrated with a CSP plant," Energy, Elsevier, vol. 265(C).
    2. Anderson, Austin & Rezaie, Behnaz, 2019. "Geothermal technology: Trends and potential role in a sustainable future," Applied Energy, Elsevier, vol. 248(C), pages 18-34.
    3. Szturgulewski, Kacper & Głuch, Jerzy & Drosińska-Komor, Marta & Ziółkowski, Paweł & Gardzilewicz, Andrzej & Brzezińska-Gołębiewska, Katarzyna, 2024. "Hybrid geothermal-fossil power cycle analysis in a Polish setting with a focus on off-design performance and CO2 emissions reductions," Energy, Elsevier, vol. 299(C).
    4. Hu, Shuozhuo & Yang, Zhen & Li, Jian & Duan, Yuanyuan, 2022. "Optimal solar thermal retrofit for geothermal power systems considering the lifetime brine degradation," Renewable Energy, Elsevier, vol. 186(C), pages 628-645.
    5. Boukelia, T.E. & Arslan, O. & Bouraoui, A., 2021. "Thermodynamic performance assessment of a new solar tower-geothermal combined power plant compared to the conventional solar tower power plant," Energy, Elsevier, vol. 232(C).
    6. Li, Huabin & Tao, Ye & Zhang, Yang & Fu, Hong, 2022. "Two-objective optimization of a hybrid solar-geothermal system with thermal energy storage for power, hydrogen and freshwater production based on transcritical CO2 cycle," Renewable Energy, Elsevier, vol. 183(C), pages 51-66.
    7. Li, Tailu & Qin, Haosen & Wang, Jianqiang & Gao, Xiang & Meng, Nan & Jia, Yanan & Liu, Qinghua, 2021. "Energetic and exergetic performance of a novel polygeneration energy system driven by geothermal energy and solar energy for power, hydrogen and domestic hot water," Renewable Energy, Elsevier, vol. 175(C), pages 318-336.
    8. Loni, Reyhaneh & Mahian, Omid & Markides, Christos N. & Bellos, Evangelos & le Roux, Willem G. & Kasaeian, Ailbakhsh & Najafi, Gholamhassan & Rajaee, Fatemeh, 2021. "A review of solar-driven organic Rankine cycles: Recent challenges and future outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    9. DeLovato, Nicolas & Sundarnath, Kavin & Cvijovic, Lazar & Kota, Krishna & Kuravi, Sarada, 2019. "A review of heat recovery applications for solar and geothermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    10. Jaszczur, Marek & Hassan, Qusay & Palej, Patryk & Abdulateef, Jasim, 2020. "Multi-Objective optimisation of a micro-grid hybrid power system for household application," Energy, Elsevier, vol. 202(C).
    11. Xu, Xiao & Hu, Weihao & Cao, Di & Liu, Wen & Huang, Qi & Hu, Yanting & Chen, Zhe, 2021. "Enhanced design of an offgrid PV-battery-methanation hybrid energy system for power/gas supply," Renewable Energy, Elsevier, vol. 167(C), pages 440-456.
    12. Yang, Jingze & Chi, Hetian & Cheng, Mohan & Dong, Mingqi & Li, Siwu & Yao, Hong, 2023. "Performance analysis of hydrogen supply using curtailed power from a solar-wind-storage power system," Renewable Energy, Elsevier, vol. 212(C), pages 1005-1019.
    13. Wang, Gang & Zhang, Zhen & Lin, Jianqing, 2024. "Multi-energy complementary power systems based on solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    14. Salvatore Digiesi & Giovanni Mummolo & Micaela Vitti, 2022. "Minimum Emissions Configuration of a Green Energy–Steel System: An Analytical Model," Energies, MDPI, vol. 15(9), pages 1-21, May.
    15. Vonsée, Bram & Crijns-Graus, Wina & Liu, Wen, 2019. "Energy technology dependence - A value chain analysis of geothermal power in the EU," Energy, Elsevier, vol. 178(C), pages 419-435.
    16. Ciani Bassetti, Martina & Consoli, Daniele & Manente, Giovanni & Lazzaretto, Andrea, 2018. "Design and off-design models of a hybrid geothermal-solar power plant enhanced by a thermal storage," Renewable Energy, Elsevier, vol. 128(PB), pages 460-472.
    17. Gude, Veera Gnaneswar, 2016. "Geothermal source potential for water desalination – Current status and future perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1038-1065.
    18. Luo, Shihua & Hu, Weihao & Liu, Wen & Zhang, Zhenyuan & Bai, Chunguang & Huang, Qi & Chen, Zhe, 2022. "Study on the decarbonization in China's power sector under the background of carbon neutrality by 2060," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    19. Huo, Dongxia & Bagadeem, Salim & Elsherazy, Tarek Abbas & Nasnodkar, Siddhesh Prabhu & Kalra, Akash, 2023. "Renewable energy consumption and the rising effect of climate policy uncertainty: Fresh policy analysis from China," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 1459-1474.
    20. Özge Çepelioğullar Mutlu & Daniel Büchner & Steffi Theurich & Thomas Zeng, 2021. "Combined Use of Solar and Biomass Energy for Sustainable and Cost-Effective Low-Temperature Drying of Food Processing Residues on Industrial-Scale," Energies, MDPI, vol. 14(3), pages 1-22, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:1961-:d:766292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.