IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v232y2024ics0960148124011029.html
   My bibliography  Save this article

A comprehensive investigation of thermal coke formation during rapid non-catalytic pyrolysis of rubber seed oil

Author

Listed:
  • Du, Jinlong
  • Hu, Jianhang
  • Yang, Shiliang
  • Liu, Huili
  • Wang, Hua

Abstract

Due to coking deposits, catalyst deactivation severely affects the upgrading of triglyceride biomass. Understanding the chemical nature and development of coke species is essential for mitigating the degree of coking and for the regeneration process of the catalysts. In this study, SEM, XRD, FT-IR, Raman and XPS are employed to gain insights into the coking behavior of RSO during the rapid pyrolysis process. The results show that pyrolysis of RSO produces high quality syngas with 98.72 % H2 and CO. The unstable O-containing functional groups in the cokes continue to be lost, which indirectly promotes the condensation reaction of aromatic hydrocarbons. The hydroxyl group is the main functional group that affects the reactivity of cokes, and it is one of its more active groups. Although the crystal size of the cokes is growing, its degree of graphitization is decreasing with the temperature increases. The size of the aromatic ring system in the cokes gradually increases with increasing temperature. The cross-linking structure in the coke is constantly being destroyed. Resulting in some O-containing functional groups entering the cokes. Based on this work, the coke evolutionary route of rapid pyrolysis of RSO is proposed.

Suggested Citation

  • Du, Jinlong & Hu, Jianhang & Yang, Shiliang & Liu, Huili & Wang, Hua, 2024. "A comprehensive investigation of thermal coke formation during rapid non-catalytic pyrolysis of rubber seed oil," Renewable Energy, Elsevier, vol. 232(C).
  • Handle: RePEc:eee:renene:v:232:y:2024:i:c:s0960148124011029
    DOI: 10.1016/j.renene.2024.121034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124011029
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiong, Jianyun & Zhang, Shumei & Fan, Liangliang & Zhang, Qi & Cui, Xian & Ke, Linyao & Zeng, Yuan & Wu, Qiuhao & Cobb, Kirk & Liu, Yuhuan & Ruan, Roger & Wang, Yunpu, 2023. "Production of bio-oil from waste cooking oil via microwave-assisted pyrolysis in the presence of waste eggshell CaO and HZSM-5: Process optimization and catalyst lifetime exploration," Energy, Elsevier, vol. 283(C).
    2. Ke, Linyao & Wu, Qiuhao & Zhou, Nan & Xiong, Jianyun & Yang, Qi & Zhang, Letian & Wang, Yuanyuan & Dai, Leilei & Zou, Rongge & Liu, Yuhuan & Ruan, Roger & Wang, Yunpu, 2022. "Lignocellulosic biomass pyrolysis for aromatic hydrocarbons production: Pre and in-process enhancement methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    3. Ochoa, Aitor & Bilbao, Javier & Gayubo, Ana G. & Castaño, Pedro, 2020. "Coke formation and deactivation during catalytic reforming of biomass and waste pyrolysis products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    4. Song, Yonghui & Lei, Siming & Li, Jincheng & Yin, Ning & Zhou, Jun & Lan, Xinzhe, 2021. "In situ FT-IR analysis of coke formation mechanism during Co-pyrolysis of low-rank coal and direct coal liquefaction residue," Renewable Energy, Elsevier, vol. 179(C), pages 2048-2062.
    5. Mihai Mutascu, 2023. "Is biomass energy really sustainable in the United States?," Post-Print hal-04273859, HAL.
    6. Mbiankeu Nguea, Stéphane & Hervé Kaffo Fotio,, 2024. "Synthesizing the role of biomass energy consumption and human development in achieving environmental sustainability," Energy, Elsevier, vol. 293(C).
    7. Mutascu, Mihai, 2023. "Is biomass energy really sustainable in the United States?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 181(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fu, Chao & Zhang, Wei & Li, Anxiang & Shen, Qingfei & Zhao, Ning & Cui, Zhiheng & Wang, Jiangjiang, 2024. "Exergy-water-carbon-cost nexus of a biomass-syngas-fueled fuel cell system integrated with organic Rankine cycle," Renewable Energy, Elsevier, vol. 231(C).
    2. Du, Jinlong & Shen, Tianhao & Hu, Jianhang & Zhang, Fengxia & Yang, Shiliang & Liu, Huili & Wang, Hua, 2023. "Study on thermochemical conversion of triglyceride biomass catalyzed by biochar catalyst," Energy, Elsevier, vol. 277(C).
    3. Chen, Cheng & Volpe, Roberto & Jiang, Xi, 2021. "A molecular investigation on lignin thermochemical conversion and carbonaceous organics deposition induced catalyst deactivation," Applied Energy, Elsevier, vol. 302(C).
    4. Duan, Zhengxiao & Zhang, Yanni & Deng, Jun & Shu, Pan & Yao, Di, 2023. "A systematic exploration of mapping knowledge domains for free radical research related to coal," Energy, Elsevier, vol. 282(C).
    5. Wang, Chunsheng & Wang, Yishuang & Chen, Mingqiang & Hu, Jiaxin & Liang, Defang & Tang, Zhiyuan & Yang, Zhonglian & Wang, Jun & Zhang, Han, 2021. "Comparison of the regenerability of Co/sepiolite and Co/Al2O3 catalysts containing the spinel phase in simulated bio-oil steam reforming," Energy, Elsevier, vol. 214(C).
    6. Wang, Xin & Jin, Xiaodong & Wang, Hui & Wang, Yi & Zuo, Lu & Shen, Boxiong & Yang, Jiancheng, 2023. "Catalytic pyrolysis of microalgal lipids to liquid biofuels: Metal oxide doped catalysts with hierarchically porous structure and their performance," Renewable Energy, Elsevier, vol. 212(C), pages 887-896.
    7. Wu, Qiuhao & Huang, Wanhao & Dai, Anqi & Ke, Linyao & Zhang, Letian & Zhang, Qi & Cui, Xian & Fan, Liangliang & Xu, Chuangxin & Cobb, Krik & Zou, Rongge & Pan, Xiangwen & Liu, Yuhuan & Ruan, Roger & W, 2024. "Two-step fast pyrolysis of torrefied corncobs and waste cooking oil under different atmosphere for hydrocarbons production," Energy, Elsevier, vol. 286(C).
    8. Yang, Xinyu & Shao, Shanshan & Li, Xiaohua & Tang, Dong, 2023. "Catalytic transfer hydrogenation of bio-oil over biochar-based CuO catalyst using methanol as hydrogen donor," Renewable Energy, Elsevier, vol. 211(C), pages 21-30.
    9. Gao, Ningbo & Salisu, Jamilu & Quan, Cui & Williams, Paul, 2021. "Modified nickel-based catalysts for improved steam reforming of biomass tar: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    10. Maket, Isaiah, 2024. "Rethinking energy poverty alleviation through financial inclusion: Do institutional quality and climate change risk matter?," Utilities Policy, Elsevier, vol. 91(C).
    11. Wei, Shuxia & Li, Zichen & Sun, Yong & Zhang, Jiemei & Ge, Yuanyuan & Li, Zhili, 2022. "A comprehensive review on biomass humification: Recent advances in pathways, challenges, new applications, and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    12. Mayu Hamazaki & Shan Miao & Mitsuo Kameyama & Hisashi Kamiuchi & Kiyoshi Dowaki, 2024. "CFD Simulation of Moving-Bed Pyrolizer for Sewage Sludge Considering Gas and Tar Behavior," Sustainability, MDPI, vol. 16(22), pages 1-20, November.
    13. Jerzak, Wojciech & Sieradzka, Małgorzata & Wądrzyk, Mariusz & Magdziarz, Aneta, 2024. "Comparative study of grass pyrolysis over regenerated catalysts: Tyre ash, zeolite, and nickel-supported ash and zeolite," Renewable Energy, Elsevier, vol. 236(C).
    14. Feng, Dongdong & Wang, Shizhang & Dong, Heming & Wang, Junjie & Wang, Fuhua & Shang, Qi & Zhao, Yijun & Sun, Shaozeng, 2024. "Mechanism on CMD reaction regulated by supports and promoters of Fe-based catalysts," Energy, Elsevier, vol. 298(C).
    15. Douvartzides, Savvas & Charisiou, Nikolaos D. & Wang, Wen & Papadakis, Vagelis G. & Polychronopoulou, Kyriaki & Goula, Maria A., 2022. "Catalytic fast pyrolysis of agricultural residues and dedicated energy crops for the production of high energy density transportation biofuels. Part II: Catalytic research," Renewable Energy, Elsevier, vol. 189(C), pages 315-338.
    16. Guo, Feiqiang & Qiao, Qixia & Mao, Songbo & Bai, Jiaming & Dong, Kaiming & Shu, Rui & Xu, Liya & Wei, Haixiao & Qian, Lin & Wang, Yunpu, 2023. "A comprehensive study on the pyrolysis behavior of pine sawdust catalyzed by different metal ions under conventional and microwave heating conditions," Energy, Elsevier, vol. 272(C).
    17. Fernandez, Enara & Santamaria, Laura & Amutio, Maider & Artetxe, Maite & Arregi, Aitor & Lopez, Gartzen & Bilbao, Javier & Olazar, Martin, 2022. "Role of temperature in the biomass steam pyrolysis in a conical spouted bed reactor," Energy, Elsevier, vol. 238(PC).
    18. Li, Yingkai & Zhu, Linyu & Yellezuome, Dominic & Zhou, Zhongyue & Tao, Shanwen & Liu, Ronghou, 2024. "Catalytic pyrolysis of poplar sawdust pretreated with combined leaching and torrefaction over Fe–Ni/ZSM-5 for aromatic-rich bio-oil production," Renewable Energy, Elsevier, vol. 227(C).
    19. Wu, Qiuhao & Zhang, Letian & Ke, Linyao & Zhang, Qi & Cui, Xian & Yang, Qi & Wang, Yuanyuan & Dai, Anqi & Xu, Chuangxin & Liu, Yuhuan & Ruan, Roger & Wang, Yunpu, 2023. "Microwave-assisted pyrolysis of waste cooking oil for bio-based hydrocarbons over Chem-CaO@SiC catalyst," Energy, Elsevier, vol. 263(PB).
    20. Zhao, Liwen & Liu, Guilian, 2022. "Dynamic coupling of reactor and heat exchanger network considering catalyst deactivation," Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:232:y:2024:i:c:s0960148124011029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.