IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v297y2024ics0360544224008223.html
   My bibliography  Save this article

Theoretical study on the dehumidification behaviors of dual-desiccants coated cross-flow heat exchanger with staged adsorption-desorption process

Author

Listed:
  • Liu, Lin
  • Wu, Rongjun
  • Huang, Hongyu
  • Li, Jun
  • Bai, Yu
  • He, Zhaohong
  • Deng, Lisheng
  • Wang, Zhenpeng
  • Kubota, Mitsuhiro
  • Kobayashi, Noriyuki

Abstract

The conventional desiccant coated heat exchangers (DCHEs) suffer from the inefficient utilization of regenerative energy and the inadequate dehumidification capacity of a single desiccant. In this study, a concept of dual-desiccants cross-flow DCHE with staged adsorption-desorption process was proposed to strengthen dehumidification capacity and energy efficiency simultaneously. In order to guide the construction of proposed DCHE, the steady-state dehumidification capacity of single-desiccant (specifically, silica gel, FAM Z01, FAM Z05 and EMM-8) cross-flow DCHE was investigated by thermodynamic analysis. The dual-desiccants cross-flow DCHE was thus constructed, and its numerical model was established to investigate the dehumidification characteristics. Theoretical analysis revealed that single-desiccant cross-flow DCHEs exhibit different optimal relative humidity ranges for dehumidification. The minimum regeneration temperature driving dehumidification cycle increases as the lower supply air humidity is required. Numerical results demonstrated that the staged adsorption process ensures a large dehumidification capacity across a wide humidity range, including low humidity conditions. Meanwhile, the staged desorption process facilitates the cascade utilization of energy and the direct recovery of regenerative waste heat. For dual-desiccants cross-flow DCHE utilizing silica gel and EMM-8, the moisture removal capacity and dehumidification coefficient of performance can reach 0.012 kg/kg and 0.41, respectively.

Suggested Citation

  • Liu, Lin & Wu, Rongjun & Huang, Hongyu & Li, Jun & Bai, Yu & He, Zhaohong & Deng, Lisheng & Wang, Zhenpeng & Kubota, Mitsuhiro & Kobayashi, Noriyuki, 2024. "Theoretical study on the dehumidification behaviors of dual-desiccants coated cross-flow heat exchanger with staged adsorption-desorption process," Energy, Elsevier, vol. 297(C).
  • Handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224008223
    DOI: 10.1016/j.energy.2024.131050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224008223
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Lin & Kubota, Mitsuhiro & Li, Jun & Kimura, Hayato & Bai, Yu & Wu, Rongjun & Deng, Lisheng & Huang, Hongyu & Kobayashi, Noriyuki, 2022. "Comparative study on the water uptake kinetics and dehumidification performance of silica gel and aluminophosphate zeolites coatings," Energy, Elsevier, vol. 242(C).
    2. Zhangli Liu & Jiaxing Xu & Min Xu & Caifeng Huang & Ruzhu Wang & Tingxian Li & Xiulan Huai, 2022. "Ultralow-temperature-driven water-based sorption refrigeration enabled by low-cost zeolite-like porous aluminophosphate," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Liu, Lin & Huang, Hongyu & Li, Jun & Bai, Yu & Wu, Rongjun & He, Zhaohong & Deng, Lisheng & Kubota, Mitsuhiro & Kobayashi, Noriyuki, 2023. "Modeling comparison and theoretical study of mass transfer characteristics for desiccant coated air channel under isothermal dehumidification," Energy, Elsevier, vol. 274(C).
    4. Karmakar, Avishek & Prabakaran, Vivekh & Zhao, Dan & Chua, Kian Jon, 2020. "A review of metal-organic frameworks (MOFs) as energy-efficient desiccants for adsorption driven heat-transformation applications," Applied Energy, Elsevier, vol. 269(C).
    5. Sultan, Muhammad & Miyazaki, Takahiko & Koyama, Shigeru, 2018. "Optimization of adsorption isotherm types for desiccant air-conditioning applications," Renewable Energy, Elsevier, vol. 121(C), pages 441-450.
    6. Liu, M. & Prabakaran, V. & Bui, T. & Cheng, G.G. & Pang, W., 2023. "Three-dimensional numerical analysis of fin-tube desiccant-coated heat exchanger for air dehumidification in tropics," Applied Energy, Elsevier, vol. 331(C).
    7. Chai, Shaowei & Chen, Erjian & Xie, Mingxi & Zhao, Yao & Dai, Yanjun, 2022. "Experimental study of dehumidification performance and solar thermal energy enhancement properties on a dehumidification system using desiccant coated heat exchanger," Energy, Elsevier, vol. 259(C).
    8. Venegas, Tomas & Qu, Ming & Nawaz, Kashif & Wang, Lingshi, 2021. "Critical review and future prospects for desiccant coated heat exchangers: Materials, design, and manufacturing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    9. Feng, Y.H. & Dai, Y.J. & Wang, R.Z. & Ge, T.S., 2022. "Insights into desiccant-based internally-cooled dehumidification using porous sorbents: From a modeling viewpoint," Applied Energy, Elsevier, vol. 311(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ge, Lurong & Feng, Yaohui & Wu, Jiarong & Wang, Ruzhu & Ge, Tianshu, 2024. "Performance evaluation of MIL-101(Cr) based desiccant-coated heat exchangers for efficient dehumidification," Energy, Elsevier, vol. 289(C).
    2. Zhang, Qunli & Li, Yanxin & Zhang, Qiuyue & Ma, Fengge & Lü, Xiaoshu, 2024. "Application of deep dehumidification technology in low-humidity industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    3. Zheng, Xu & Wan, Tinghao & Zhang, Yu & Ma, Qianling, 2024. "Experimental investigation of a thermo-responsive composite coated heat exchanger for ultra-low grade heat utilization," Energy, Elsevier, vol. 293(C).
    4. Feng, Y.H. & Dai, Y.J. & Wang, R.Z. & Ge, T.S., 2022. "Insights into desiccant-based internally-cooled dehumidification using porous sorbents: From a modeling viewpoint," Applied Energy, Elsevier, vol. 311(C).
    5. Chai, Shaowei & Chen, Erjian & Xie, Mingxi & Zhao, Yao & Dai, Yanjun, 2022. "Experimental study of dehumidification performance and solar thermal energy enhancement properties on a dehumidification system using desiccant coated heat exchanger," Energy, Elsevier, vol. 259(C).
    6. Liu, Lin & Huang, Hongyu & Li, Jun & Bai, Yu & Wu, Rongjun & He, Zhaohong & Deng, Lisheng & Kubota, Mitsuhiro & Kobayashi, Noriyuki, 2023. "Modeling comparison and theoretical study of mass transfer characteristics for desiccant coated air channel under isothermal dehumidification," Energy, Elsevier, vol. 274(C).
    7. Ge, Lurong & Ge, Tianshu & Wang, Ruzhu, 2022. "Facile synthesis of Al-based MOF and its applications in desiccant coated heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    8. Xu, Jing & Pan, Qaunwen & Zhang, Wei & Liu, Zhiliang & Wang, Ruzhu & Ge, Tianshu, 2022. "Design and experimental study on a hybrid adsorption refrigeration system using desiccant coated heat exchangers for efficient energy utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    9. Chen, W.D. & Vivekh, P. & Liu, M.Z. & Kumja, M. & Chua, K.J., 2021. "Energy improvement and performance prediction of desiccant coated dehumidifiers based on dimensional and scaling analysis," Applied Energy, Elsevier, vol. 303(C).
    10. Zu, Kan & Qin, Menghao & Cui, Shuqing, 2020. "Progress and potential of metal-organic frameworks (MOFs) as novel desiccants for built environment control: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    11. Hafiz M. Asfahan & Uzair Sajjad & Muhammad Sultan & Imtiyaz Hussain & Khalid Hamid & Mubasher Ali & Chi-Chuan Wang & Redmond R. Shamshiri & Muhammad Usman Khan, 2021. "Artificial Intelligence for the Prediction of the Thermal Performance of Evaporative Cooling Systems," Energies, MDPI, vol. 14(13), pages 1-20, July.
    12. Choudhary, Ram Bilash & Ansari, Sarfaraz & Majumder, Mandira, 2021. "Recent advances on redox active composites of metal-organic framework and conducting polymers as pseudocapacitor electrode material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    13. B. Kiran Naik & Mullapudi Joshi & Palanisamy Muthukumar & Muhammad Sultan & Takahiko Miyazaki & Redmond R. Shamshiri & Hadeed Ashraf, 2020. "Investigating Solid and Liquid Desiccant Dehumidification Options for Room Air-Conditioning and Drying Applications," Sustainability, MDPI, vol. 12(24), pages 1-22, December.
    14. Venegas, Tomas & Qu, Ming & Nawaz, Kashif & Wang, Lingshi, 2021. "Critical review and future prospects for desiccant coated heat exchangers: Materials, design, and manufacturing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    15. Shabir, Faizan & Sultan, Muhammad & Miyazaki, Takahiko & Saha, Bidyut B. & Askalany, Ahmed & Ali, Imran & Zhou, Yuguang & Ahmad, Riaz & Shamshiri, Redmond R., 2020. "Recent updates on the adsorption capacities of adsorbent-adsorbate pairs for heat transformation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    16. Md. Matiar Rahman & Mahbubul Muttakin & Animesh Pal & Abu Zar Shafiullah & Bidyut Baran Saha, 2019. "A Statistical Approach to Determine Optimal Models for IUPAC-Classified Adsorption Isotherms," Energies, MDPI, vol. 12(23), pages 1-34, November.
    17. Vivekh, P. & Bui, D.T. & Islam, M.R. & Zaw, K. & Chua, K.J., 2020. "Experimental performance and energy efficiency investigation of composite superabsorbent polymer and potassium formate coated heat exchangers," Applied Energy, Elsevier, vol. 275(C).
    18. Shazia Noor & Hadeed Ashraf & Muhammad Sultan & Zahid Mahmood Khan, 2020. "Evaporative Cooling Options for Building Air-Conditioning: A Comprehensive Study for Climatic Conditions of Multan (Pakistan)," Energies, MDPI, vol. 13(12), pages 1-23, June.
    19. Shahvari, Saba Zakeri & Clark, Jordan D., 2023. "Approaching theoretical maximum energy performance for desiccant dehumidification using staged and optimized metal-organic frameworks," Applied Energy, Elsevier, vol. 331(C).
    20. Yu, Qiongfen & Zhao, Huirong & Sun, Shengnan & Zhao, Hong & Li, Guoliang & Li, Ming & Wang, Yunfeng, 2019. "Characterization of MgCl2/AC composite adsorbent and its water vapor adsorption for solar drying system application," Renewable Energy, Elsevier, vol. 138(C), pages 1087-1095.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224008223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.