IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v259y2022ics0360544222018813.html
   My bibliography  Save this article

Experimental study of dehumidification performance and solar thermal energy enhancement properties on a dehumidification system using desiccant coated heat exchanger

Author

Listed:
  • Chai, Shaowei
  • Chen, Erjian
  • Xie, Mingxi
  • Zhao, Yao
  • Dai, Yanjun

Abstract

Due to the high dehumidification performance realized by removing adsorption heat by inner cooing, desiccant coated heat exchanger (DCHE) has been proposed and widely studied. The heat pump is usually used as the cooling and heat sources of the dehumidification system composed of DCHE because the cooling and heat capacity could be provided by the heat pump at the same time. Moreover, considering the advantage of low-grade thermal energy utilization, solar thermal energy can be used to further enhance the regeneration of DCHE to improve dehumidification performance and energy efficiency. In this paper, the solar-enhanced fresh air dehumidification system using DCHE driven by heat pump was proposed and a series of experiments were conducted under typical Shanghai summer high humidity conditions. The typical moisture removal of the system can be increased by about 15% to 10.14 g/kgDA and the COP could be further increased by over 25% to 5.39. In addition, the influence of different regeneration temperatures enhanced by solar thermal energy on the system has also been studied. Considering the dehumidification performance improvement and energy utilization efficiency, the optimal regeneration temperature is between 60 °C and 65 °C for the system proposed in this paper.

Suggested Citation

  • Chai, Shaowei & Chen, Erjian & Xie, Mingxi & Zhao, Yao & Dai, Yanjun, 2022. "Experimental study of dehumidification performance and solar thermal energy enhancement properties on a dehumidification system using desiccant coated heat exchanger," Energy, Elsevier, vol. 259(C).
  • Handle: RePEc:eee:energy:v:259:y:2022:i:c:s0360544222018813
    DOI: 10.1016/j.energy.2022.124983
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222018813
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124983?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Buker, Mahmut Sami & Riffat, Saffa B., 2016. "Solar assisted heat pump systems for low temperature water heating applications: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 399-413.
    2. Karmakar, Avishek & Prabakaran, Vivekh & Zhao, Dan & Chua, Kian Jon, 2020. "A review of metal-organic frameworks (MOFs) as energy-efficient desiccants for adsorption driven heat-transformation applications," Applied Energy, Elsevier, vol. 269(C).
    3. Ge, T.S. & Zhang, J.Y. & Dai, Y.J. & Wang, R.Z., 2017. "Experimental study on performance of silica gel and potassium formate composite desiccant coated heat exchanger," Energy, Elsevier, vol. 141(C), pages 149-158.
    4. Fan, Yi & Zhao, Xudong & Han, Zhonghe & Li, Jing & Badiei, Ali & Akhlaghi, Yousef Golizadeh & Liu, Zhijian, 2021. "Scientific and technological progress and future perspectives of the solar assisted heat pump (SAHP) system," Energy, Elsevier, vol. 229(C).
    5. Ge, T.S. & Wang, R.Z. & Xu, Z.Y. & Pan, Q.W. & Du, S. & Chen, X.M. & Ma, T. & Wu, X.N. & Sun, X.L. & Chen, J.F., 2018. "Solar heating and cooling: Present and future development," Renewable Energy, Elsevier, vol. 126(C), pages 1126-1140.
    6. Hua, L.J. & Jiang, Y. & Ge, T.S. & Wang, R.Z., 2018. "Experimental investigation on a novel heat pump system based on desiccant coated heat exchangers," Energy, Elsevier, vol. 142(C), pages 96-107.
    7. Li, Xian & Chen, Jialing & Sun, Xiangyu & Zhao, Yao & Chong, Clive & Dai, Yanjun & Wang, Chi-Hwa, 2021. "Multi-criteria decision making of biomass gasification-based cogeneration systems with heat storage and solid dehumidification of desiccant coated heat exchangers," Energy, Elsevier, vol. 233(C).
    8. Shukla, Dhruvin L. & Modi, Kalpesh V., 2017. "A technical review on regeneration of liquid desiccant using solar energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 517-529.
    9. Ge, T.S. & Dai, Y.J. & Wang, R.Z. & Peng, Z.Z., 2010. "Experimental comparison and analysis on silica gel and polymer coated fin-tube heat exchangers," Energy, Elsevier, vol. 35(7), pages 2893-2900.
    10. Vivekh, P. & Kumja, M. & Bui, D.T. & Chua, K.J., 2018. "Recent developments in solid desiccant coated heat exchangers – A review," Applied Energy, Elsevier, vol. 229(C), pages 778-803.
    11. Venegas, Tomas & Qu, Ming & Nawaz, Kashif & Wang, Lingshi, 2021. "Critical review and future prospects for desiccant coated heat exchangers: Materials, design, and manufacturing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    12. Del Col, Davide & Padovan, Andrea & Bortolato, Matteo & Dai Prè, Marco & Zambolin, Enrico, 2013. "Thermal performance of flat plate solar collectors with sheet-and-tube and roll-bond absorbers," Energy, Elsevier, vol. 58(C), pages 258-269.
    13. Xu, F. & Bian, Z.F. & Ge, T.S. & Dai, Y.J. & Wang, C.H. & Kawi, S., 2019. "Analysis on solar energy powered cooling system based on desiccant coated heat exchanger using metal-organic framework," Energy, Elsevier, vol. 177(C), pages 211-221.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Aixiang & Wang, Yizhang & Song, Tingting & Xiong, Yawen & Liu, Zhiqiang & Yang, Sheng, 2023. "Emergy evaluation of a solar-powered cascade system for dehumidification, cooling and heating in hot summer and cold winter areas of China," Energy, Elsevier, vol. 278(PB).
    2. Liu, Lin & Wu, Rongjun & Huang, Hongyu & Li, Jun & Bai, Yu & He, Zhaohong & Deng, Lisheng & Wang, Zhenpeng & Kubota, Mitsuhiro & Kobayashi, Noriyuki, 2024. "Theoretical study on the dehumidification behaviors of dual-desiccants coated cross-flow heat exchanger with staged adsorption-desorption process," Energy, Elsevier, vol. 297(C).
    3. Zheng, Xu & Zhang, Yu & Wan, Tinghao & Chen, Kang, 2023. "Experimental study on the performance of a novel superabsorbent polymer and activated carbon composite coated heat exchangers," Energy, Elsevier, vol. 281(C).
    4. Ge, Lurong & Feng, Yaohui & Wu, Jiarong & Wang, Ruzhu & Ge, Tianshu, 2024. "Performance evaluation of MIL-101(Cr) based desiccant-coated heat exchangers for efficient dehumidification," Energy, Elsevier, vol. 289(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Y.H. & Dai, Y.J. & Wang, R.Z. & Ge, T.S., 2022. "Insights into desiccant-based internally-cooled dehumidification using porous sorbents: From a modeling viewpoint," Applied Energy, Elsevier, vol. 311(C).
    2. Ge, Lurong & Ge, Tianshu & Wang, Ruzhu, 2022. "Facile synthesis of Al-based MOF and its applications in desiccant coated heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    3. Ge, Lurong & Feng, Yaohui & Wu, Jiarong & Wang, Ruzhu & Ge, Tianshu, 2024. "Performance evaluation of MIL-101(Cr) based desiccant-coated heat exchangers for efficient dehumidification," Energy, Elsevier, vol. 289(C).
    4. Karmakar, Avishek & Prabakaran, Vivekh & Zhao, Dan & Chua, Kian Jon, 2020. "A review of metal-organic frameworks (MOFs) as energy-efficient desiccants for adsorption driven heat-transformation applications," Applied Energy, Elsevier, vol. 269(C).
    5. Venegas, Tomas & Qu, Ming & Nawaz, Kashif & Wang, Lingshi, 2021. "Critical review and future prospects for desiccant coated heat exchangers: Materials, design, and manufacturing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    6. Zhang, Qunli & Li, Yanxin & Zhang, Qiuyue & Ma, Fengge & Lü, Xiaoshu, 2024. "Application of deep dehumidification technology in low-humidity industry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    7. Vivekh, P. & Bui, D.T. & Islam, M.R. & Zaw, K. & Chua, K.J., 2020. "Experimental performance and energy efficiency investigation of composite superabsorbent polymer and potassium formate coated heat exchangers," Applied Energy, Elsevier, vol. 275(C).
    8. Liu, M. & Prabakaran, V. & Bui, T. & Cheng, G.G. & Pang, W., 2023. "Three-dimensional numerical analysis of fin-tube desiccant-coated heat exchanger for air dehumidification in tropics," Applied Energy, Elsevier, vol. 331(C).
    9. Chen, W.D. & Vivekh, P. & Liu, M.Z. & Kumja, M. & Chua, K.J., 2021. "Energy improvement and performance prediction of desiccant coated dehumidifiers based on dimensional and scaling analysis," Applied Energy, Elsevier, vol. 303(C).
    10. Zu, Kan & Qin, Menghao & Cui, Shuqing, 2020. "Progress and potential of metal-organic frameworks (MOFs) as novel desiccants for built environment control: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    11. Wang, Cong & Yang, Bianfeng & Ji, Xu & Zhang, Ren & Wu, Hailong, 2022. "Study on activated carbon/silica gel/lithium chloride composite desiccant for solid dehumidification," Energy, Elsevier, vol. 251(C).
    12. Chen, K. & Zheng, X. & Wang, S.N., 2022. "Investigation on activated carbon-sodium polyacrylate coated aluminum sheets for desiccant coated heat exchanger," Energy, Elsevier, vol. 245(C).
    13. Gao, D.C. & Sun, Y.J. & Ma, Z. & Ren, H., 2021. "A review on integration and design of desiccant air-conditioning systems for overall performance improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    14. Zheng, Xu & Wan, Tinghao & Zhang, Yu & Ma, Qianling, 2024. "Experimental investigation of a thermo-responsive composite coated heat exchanger for ultra-low grade heat utilization," Energy, Elsevier, vol. 293(C).
    15. Vivekh, P. & Islam, M.R. & Chua, K.J., 2020. "Experimental performance evaluation of a composite superabsorbent polymer coated heat exchanger based air dehumidification system," Applied Energy, Elsevier, vol. 260(C).
    16. Liu, Lin & Huang, Hongyu & Li, Jun & Bai, Yu & Wu, Rongjun & He, Zhaohong & Deng, Lisheng & Kubota, Mitsuhiro & Kobayashi, Noriyuki, 2023. "Modeling comparison and theoretical study of mass transfer characteristics for desiccant coated air channel under isothermal dehumidification," Energy, Elsevier, vol. 274(C).
    17. Valarezo, Andres S. & Sun, X.Y. & Ge, T.S. & Dai, Y.J. & Wang, R.Z., 2019. "Experimental investigation on performance of a novel composite desiccant coated heat exchanger in summer and winter seasons," Energy, Elsevier, vol. 166(C), pages 506-518.
    18. Su, Wei & Lu, Zhifei & She, Xiaohui & Zhou, Junming & Wang, Feng & Sun, Bo & Zhang, Xiaosong, 2022. "Liquid desiccant regeneration for advanced air conditioning: A comprehensive review on desiccant materials, regenerators, systems and improvement technologies," Applied Energy, Elsevier, vol. 308(C).
    19. Liu, Lin & Wu, Rongjun & Huang, Hongyu & Li, Jun & Bai, Yu & He, Zhaohong & Deng, Lisheng & Wang, Zhenpeng & Kubota, Mitsuhiro & Kobayashi, Noriyuki, 2024. "Theoretical study on the dehumidification behaviors of dual-desiccants coated cross-flow heat exchanger with staged adsorption-desorption process," Energy, Elsevier, vol. 297(C).
    20. Shahvari, Saba Zakeri & Clark, Jordan D., 2023. "Approaching theoretical maximum energy performance for desiccant dehumidification using staged and optimized metal-organic frameworks," Applied Energy, Elsevier, vol. 331(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:259:y:2022:i:c:s0360544222018813. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.