IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-021-27883-4.html
   My bibliography  Save this article

Ultralow-temperature-driven water-based sorption refrigeration enabled by low-cost zeolite-like porous aluminophosphate

Author

Listed:
  • Zhangli Liu

    (Chinese Academy of Sciences)

  • Jiaxing Xu

    (Shanghai Jiao Tong University)

  • Min Xu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Nanjing Institute of Future Energy System)

  • Caifeng Huang

    (Chinese Academy of Sciences
    Nanjing Institute of Future Energy System)

  • Ruzhu Wang

    (Shanghai Jiao Tong University)

  • Tingxian Li

    (Shanghai Jiao Tong University)

  • Xiulan Huai

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Nanjing Institute of Future Energy System)

Abstract

Thermally driven water-based sorption refrigeration is considered a promising strategy to realize near-zero-carbon cooling applications by addressing the urgent global climate challenge caused by conventional chlorofluorocarbon (CFC) refrigerants. However, developing cost-effective and high-performance water-sorption porous materials driven by low-temperature thermal energy is still a significant challenge. Here, we propose a zeolite-like aluminophosphate with SFO topology (EMM-8) for water-sorption-driven refrigeration. The EMM-8 is characterized by 12-membered ring channels with large accessible pore volume and exhibits high water uptake of 0.28 g·g−1 at P/P0 = 0.2, low-temperature regeneration of 65 °C, fast adsorption kinetics, remarkable hydrothermal stability, and scalable fabrication. Importantly, the water-sorption-based chiller with EMM-8 shows the potential of achieving a record coefficient of performance (COP) of 0.85 at an ultralow-driven temperature of 63 °C. The working performance makes EMM-8 a practical alternative to realize high-efficient ultra-low-temperature-driven refrigeration.

Suggested Citation

  • Zhangli Liu & Jiaxing Xu & Min Xu & Caifeng Huang & Ruzhu Wang & Tingxian Li & Xiulan Huai, 2022. "Ultralow-temperature-driven water-based sorption refrigeration enabled by low-cost zeolite-like porous aluminophosphate," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-021-27883-4
    DOI: 10.1038/s41467-021-27883-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27883-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27883-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Lin & Wu, Rongjun & Huang, Hongyu & Li, Jun & Bai, Yu & He, Zhaohong & Deng, Lisheng & Wang, Zhenpeng & Kubota, Mitsuhiro & Kobayashi, Noriyuki, 2024. "Theoretical study on the dehumidification behaviors of dual-desiccants coated cross-flow heat exchanger with staged adsorption-desorption process," Energy, Elsevier, vol. 297(C).
    2. Pan, Q.W. & Xu, J. & Wang, R.Z. & Ge, T.S., 2022. "A new operation strategy based on unequal ad-/desorption time for a two-bed adsorption refrigeration system," Energy, Elsevier, vol. 259(C).
    3. Seonggon Kim & Jong Ha Park & Jae Won Lee & Yongchan Kim & Yong Tae Kang, 2023. "Self-recovering passive cooling utilizing endothermic reaction of NH4NO3/H2O driven by water sorption for photovoltaic cell," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Xu, Jing & Pan, Qaunwen & Zhang, Wei & Liu, Zhiliang & Wang, Ruzhu & Ge, Tianshu, 2022. "Design and experimental study on a hybrid adsorption refrigeration system using desiccant coated heat exchangers for efficient energy utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    5. Cui, Zhaopeng & Du, Shuai & Wang, Ruzhu & Cheng, Chao & Wei, Liuzhu & Wang, Xuejiao, 2024. "Development and experimental study of a small-scale adsorption cold storage prototype with stable and tunable output for off-grid cooling," Energy, Elsevier, vol. 300(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-021-27883-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.