IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v190y2017icp368-375.html
   My bibliography  Save this article

A frequency and bandwidth tunable piezoelectric vibration energy harvester using multiple nonlinear techniques

Author

Listed:
  • Wang, Xiang
  • Chen, Changsong
  • Wang, Na
  • San, Haisheng
  • Yu, Yuxi
  • Halvorsen, Einar
  • Chen, Xuyuan

Abstract

This article presents a compact piezoelectric vibration energy harvester (VEH) using multiple nonlinear techniques to tuning the resonant frequency and broadening the bandwidth. The device was designed as a parallel-plate structure consisting of a suspended spring-plate with proof mass and piezoelectric transducers, a tunable stopper-plate, and supporting frames. By mechanical adjusting the vertical gap between the spring-plate and the stopper-plate (GBSS), the VEH can realize tuning of the resonant frequency and the bandwidth by multiple nonlinear effects. Experimentally, the piezoelectric VEH was assembled as a metal prototype that can be operated in three kinds of work states corresponding to the configurations of large-GBSS, small-GBSS, and over-GBSS. The sweeping-frequency measurement results show that the work frequency, bandwidth, and output-voltage of VEH depend on tuning of GBSS and excitation levels, indicating that the multiple nonlinear effects, such as Duffing-spring effect, impact effect, preload effect, and air elastic effect, have significant influence on the dynamic behaviors of VEH. The comparisons of numerical simulations with the experimental results were used to verify the validity of mathematical modeling on VEH with multiple nonlinear tuning techniques.

Suggested Citation

  • Wang, Xiang & Chen, Changsong & Wang, Na & San, Haisheng & Yu, Yuxi & Halvorsen, Einar & Chen, Xuyuan, 2017. "A frequency and bandwidth tunable piezoelectric vibration energy harvester using multiple nonlinear techniques," Applied Energy, Elsevier, vol. 190(C), pages 368-375.
  • Handle: RePEc:eee:appene:v:190:y:2017:i:c:p:368-375
    DOI: 10.1016/j.apenergy.2016.12.168
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916319493
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.12.168?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Shengxi & Cao, Junyi & Inman, Daniel J. & Lin, Jing & Liu, Shengsheng & Wang, Zezhou, 2014. "Broadband tristable energy harvester: Modeling and experiment verification," Applied Energy, Elsevier, vol. 133(C), pages 33-39.
    2. Vocca, Helios & Neri, Igor & Travasso, Flavio & Gammaitoni, Luca, 2012. "Kinetic energy harvesting with bistable oscillators," Applied Energy, Elsevier, vol. 97(C), pages 771-776.
    3. Sue, Chung-Yang & Tsai, Nan-Chyuan, 2012. "Human powered MEMS-based energy harvest devices," Applied Energy, Elsevier, vol. 93(C), pages 390-403.
    4. Selvan, Krishna Veni & Mohamed Ali, Mohamed Sultan, 2016. "Micro-scale energy harvesting devices: Review of methodological performances in the last decade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1035-1047.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ju, Suna & Ji, Chang-Hyeon, 2018. "Impact-based piezoelectric vibration energy harvester," Applied Energy, Elsevier, vol. 214(C), pages 139-151.
    2. Wu, Xuan & Li, Guangyong & Lee, Dong-Weon, 2016. "A novel energy conversion method based on hydrogel material for self-powered sensor system applications," Applied Energy, Elsevier, vol. 173(C), pages 103-110.
    3. Chen, Lin & Liao, Xin & Sun, Beibei & Zhang, Ning & Wu, Jianwei, 2022. "A numerical-experimental dynamic analysis of high-efficiency and broadband bistable energy harvester with self-decreasing potential barrier effect," Applied Energy, Elsevier, vol. 317(C).
    4. Huguet, Thomas & Badel, Adrien & Druet, Olivier & Lallart, Mickaël, 2018. "Drastic bandwidth enhancement of bistable energy harvesters: Study of subharmonic behaviors and their stability robustness," Applied Energy, Elsevier, vol. 226(C), pages 607-617.
    5. Yildirim, Tanju & Ghayesh, Mergen H. & Li, Weihua & Alici, Gursel, 2017. "A review on performance enhancement techniques for ambient vibration energy harvesters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 435-449.
    6. Zhang, L.B. & Dai, H.L. & Abdelkefi, A. & Wang, L., 2019. "Experimental investigation of aerodynamic energy harvester with different interference cylinder cross-sections," Energy, Elsevier, vol. 167(C), pages 970-981.
    7. Qin, Jian & Zhang, Zhenquan & Huang, Shuting & Wang, Wei & Liu, Yanjun & Xue, Gang, 2024. "Energy capture performance enhancement of point absorber wave energy converter using magnetic tristable and quadstable mechanisms," Renewable Energy, Elsevier, vol. 221(C).
    8. Lee, Hyeon & Sharpes, Nathan & Abdelmoula, Hichem & Abdelkefi, Abdessattar & Priya, Shashank, 2018. "Higher power generation from torsion-dominant mode in a zigzag shaped two-dimensional energy harvester," Applied Energy, Elsevier, vol. 216(C), pages 494-503.
    9. Qiao, Guofu & Sun, Guodong & Li, Hui & Ou, Jinping, 2014. "Heterogeneous tiny energy: An appealing opportunity to power wireless sensor motes in a corrosive environment," Applied Energy, Elsevier, vol. 131(C), pages 87-96.
    10. Gao, Mingyuan & Wang, Yuan & Wang, Yifeng & Wang, Ping, 2018. "Experimental investigation of non-linear multi-stable electromagnetic-induction energy harvesting mechanism by magnetic levitation oscillation," Applied Energy, Elsevier, vol. 220(C), pages 856-875.
    11. Wu, Shuai & Luk, P.C.K. & Li, Chunfang & Zhao, Xiangyu & Jiao, Zongxia & Shang, Yaoxing, 2017. "An electromagnetic wearable 3-DoF resonance human body motion energy harvester using ferrofluid as a lubricant," Applied Energy, Elsevier, vol. 197(C), pages 364-374.
    12. Wei, Chongfeng & Jing, Xingjian, 2017. "A comprehensive review on vibration energy harvesting: Modelling and realization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1-18.
    13. Fan, Kangqi & Liu, Shaohua & Liu, Haiyan & Zhu, Yingmin & Wang, Weidong & Zhang, Daxing, 2018. "Scavenging energy from ultra-low frequency mechanical excitations through a bi-directional hybrid energy harvester," Applied Energy, Elsevier, vol. 216(C), pages 8-20.
    14. Zhang, Yulong & Wang, Tianyang & Luo, Anxin & Hu, Yushen & Li, Xinxin & Wang, Fei, 2018. "Micro electrostatic energy harvester with both broad bandwidth and high normalized power density," Applied Energy, Elsevier, vol. 212(C), pages 362-371.
    15. Younesian, Davood & Alam, Mohammad-Reza, 2017. "Multi-stable mechanisms for high-efficiency and broadband ocean wave energy harvesting," Applied Energy, Elsevier, vol. 197(C), pages 292-302.
    16. Javed, U. & Abdelkefi, A., 2018. "Role of the galloping force and moment of inertia of inclined square cylinders on the performance of hybrid galloping energy harvesters," Applied Energy, Elsevier, vol. 231(C), pages 259-276.
    17. Naseer, R. & Dai, H.L. & Abdelkefi, A. & Wang, L., 2017. "Piezomagnetoelastic energy harvesting from vortex-induced vibrations using monostable characteristics," Applied Energy, Elsevier, vol. 203(C), pages 142-153.
    18. Zhao, Liya & Yang, Yaowen, 2018. "An impact-based broadband aeroelastic energy harvester for concurrent wind and base vibration energy harvesting," Applied Energy, Elsevier, vol. 212(C), pages 233-243.
    19. Lallart, Mickaël & Zhou, Shengxi & Yang, Zhichun & Yan, Linjuan & Li, Kui & Chen, Yu, 2020. "Coupling mechanical and electrical nonlinearities: The effect of synchronized discharging on tristable energy harvesters," Applied Energy, Elsevier, vol. 266(C).
    20. Margielewicz, Jerzy & Gąska, Damian & Litak, Grzegorz & Wolszczak, Piotr & Yurchenko, Daniil, 2022. "Nonlinear dynamics of a new energy harvesting system with quasi-zero stiffness," Applied Energy, Elsevier, vol. 307(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:190:y:2017:i:c:p:368-375. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.