IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v294y2024ics0360544224006844.html
   My bibliography  Save this article

Excellent interfacial compatibility of phase change capsules/polyurethane foam with enhanced mechanical and thermal insulation properties for thermal energy storage

Author

Listed:
  • Han, Pengju
  • Yu, Bo
  • Zhao, Xu
  • Liu, Changhui
  • nie, Gao Wei
  • Chen, Yanfei
  • Li, Xiang
  • Shao, Weili
  • Liu, Fan
  • He, Jianxin

Abstract

The incorporation of phase change microcapsule (microPCMs) substantially augmented the temperature regulation capacity of foams, endowing it with outstanding application potential in numerous industrial domains. However, interfacial compatibility issues between the capsule and the substrate always exist and affect foam performance. In this study, a milli-meter macrocapsule (macroPCMs) containing microPCMs was prepared using calcium alginate gel as the second layer wall to physically improve the interfacial compatibility. And poly (N-hydroxymethyl acrylamide) was in situ polymerized in the gel layer and provided active alcohol hydroxyl groups to form chemical grafting with the polyurethane raw materials, which further chemically improved the interfacial compatibility. These measures created a significantly improved foam microstructure and a greatly increased foaming capacity, which thus endow the composite foam with excellent thermal insulation performance and mechanical strength. Compared with conventional microPCMs-based foam, the foaming capacity of the macroPCMs-based foam increased by 40 folds, the temperature regulation duration increased by 7 folds, and the mechanical performance increased by 3 folds. Moreover, the insulated incubator fabricated with the macroPCMs-based foam exhibited two-fold greater thermal insulation efficiency than conventional models containing internal ice incubator, which validated the potential of employing macroPCMs-based polyurethane foam in cold chain logistics applications.

Suggested Citation

  • Han, Pengju & Yu, Bo & Zhao, Xu & Liu, Changhui & nie, Gao Wei & Chen, Yanfei & Li, Xiang & Shao, Weili & Liu, Fan & He, Jianxin, 2024. "Excellent interfacial compatibility of phase change capsules/polyurethane foam with enhanced mechanical and thermal insulation properties for thermal energy storage," Energy, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224006844
    DOI: 10.1016/j.energy.2024.130912
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224006844
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130912?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Ting & Qiu, Xiaolin & Chen, Xiaojing & Lu, Lixin & Zhou, Binglin, 2022. "Sponge-like form-stable phase change materials with embedded graphene oxide for enhancing the thermal storage efficiency and the temperature response in transport packaging applications," Applied Energy, Elsevier, vol. 325(C).
    2. Kazemian, Arash & Khatibi, Meysam & Reza Maadi, Seyed & Ma, Tao, 2021. "Performance optimization of a nanofluid-based photovoltaic thermal system integrated with nano-enhanced phase change material," Applied Energy, Elsevier, vol. 295(C).
    3. Yang, Xiaohu & Guo, Zengxu & Liu, Yanhua & Jin, Liwen & He, Ya-Ling, 2019. "Effect of inclination on the thermal response of composite phase change materials for thermal energy storage," Applied Energy, Elsevier, vol. 238(C), pages 22-33.
    4. Konuklu, Yeliz & Akar, Hasan Burak, 2023. "Promising palmitic acid/poly(allyl methacrylate) microcapsules for thermal management applications," Energy, Elsevier, vol. 262(PB).
    5. Li, Wei & Zhang, Xing-xiang & Wang, Xue-chen & Tang, Guo-yi & Shi, Hai-feng, 2012. "Fabrication and morphological characterization of microencapsulated phase change materials (MicroPCMs) and macrocapsules containing MicroPCMs for thermal energy storage," Energy, Elsevier, vol. 38(1), pages 249-254.
    6. Sun, Kun & Liu, Huan & Wang, Xiaodong & Wu, Dezhen, 2019. "Innovative design of superhydrophobic thermal energy-storage materials by microencapsulation of n-docosane with nanostructured ZnO/SiO2 shell," Applied Energy, Elsevier, vol. 237(C), pages 549-565.
    7. Amaral, C. & Silva, T. & Mohseni, F. & Amaral, J.S. & Amaral, V.S. & Marques, P.A.A.P. & Barros-Timmons, A. & Vicente, R., 2021. "Experimental and numerical analysis of the thermal performance of polyurethane foams panels incorporating phase change material," Energy, Elsevier, vol. 216(C).
    8. Han, Pengju & Lu, Lixin & Qiu, Xiaolin & Tang, Yali & Wang, Jun, 2015. "Preparation and characterization of macrocapsules containing microencapsulated PCMs (phase change materials) for thermal energy storage," Energy, Elsevier, vol. 91(C), pages 531-539.
    9. Napolitano, Marialuisa & Romano, Rosario & Dragonetti, Raffaele, 2017. "Open-cell foams for thermoacoustic applications," Energy, Elsevier, vol. 138(C), pages 147-156.
    10. Liu, Changyu & Sun, Yongxiang & Li, Dong & Bian, Ji & Wu, Yangyang & Li, Pengfei & Sun, Yong, 2022. "Influence of enclosure filled with phase change material on photo-thermal regulation of direct absorption anaerobic reactor: Numerical and experimental study," Applied Energy, Elsevier, vol. 313(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Wenhui & Zhang, Hang & Liu, Shuhui & Zhang, Xingxiang & Li, Wei, 2024. "Preparation and crystallization behavior of sensitive thermochromic microencapsulated phase change materials," Applied Energy, Elsevier, vol. 362(C).
    2. He, Yayue & Li, Wei & Han, Na & Wang, Jianping & Zhang, Xingxiang, 2019. "Facile flexible reversible thermochromic membranes based on micro/nanoencapsulated phase change materials for wearable temperature sensor," Applied Energy, Elsevier, vol. 247(C), pages 615-629.
    3. Huo, Jinhua & Zhang, Ruizhi & Yu, Baisong & Che, Yuanjun & Wu, Zhansheng & Zhang, Xing & Peng, Zhigang, 2022. "Preparation, characterization, investigation of phase change micro-encapsulated thermal control material used for energy storage and temperature regulation in deep-water oil and gas development," Energy, Elsevier, vol. 239(PD).
    4. Kazemian, Arash & Khatibi, Meysam & Ma, Tao & Peng, Jinqing & Hongxing, Yang, 2023. "A thermal performance-enhancing strategy of photovoltaic thermal systems by applying surface area partially covered by solar cells," Applied Energy, Elsevier, vol. 329(C).
    5. Zhao, Yaohua & Liu, Zichu & Quan, Zhenhua & Jing, Heran & Yang, Mingguang, 2022. "Experimental investigation and multi-objective optimization of ice thermal storage device with multichannel flat tube," Renewable Energy, Elsevier, vol. 195(C), pages 28-46.
    6. Geng, Xiaoye & Li, Wei & Yin, Qing & Wang, Yu & Han, Na & Wang, Ning & Bian, Junmin & Wang, Jianping & Zhang, Xingxiang, 2018. "Design and fabrication of reversible thermochromic microencapsulated phase change materials for thermal energy storage and its antibacterial activity," Energy, Elsevier, vol. 159(C), pages 857-869.
    7. Qiu, Xiaolin & Li, Wei & Song, Guolin & Chu, Xiaodong & Tang, Guoyi, 2012. "Microencapsulated n-octadecane with different methylmethacrylate-based copolymer shells as phase change materials for thermal energy storage," Energy, Elsevier, vol. 46(1), pages 188-199.
    8. Sitong Liu & Huanmei Yuan & Dengti Hu & Tonghe Li & Hao Bai, 2024. "Effect of Dropping Speed of Reducing Agent on the Preparation of LA/Ag Phase-Change Nanocapsules," Energies, MDPI, vol. 17(4), pages 1-12, February.
    9. Yan, Zhongjun & Zhu, Yuexiang & Liu, Lifang & Yu, Zhun (Jerry) & Li, Shuisheng & Zhang, Guoqiang, 2023. "Performance enhancement of cylindrical latent heat storage units in hot water tanks via wavy design," Renewable Energy, Elsevier, vol. 218(C).
    10. Jacob, Rhys & Bruno, Frank, 2015. "Review on shell materials used in the encapsulation of phase change materials for high temperature thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 79-87.
    11. Lu, Wei & Yu, Anqi & Dong, Hao & He, Zhenglong & Liang, Yuntao & Liu, Weitao & Sun, Yong & Song, Shuanglin, 2023. "High-performance palmityl palmitate phase change microcapsules for thermal energy storage and thermal regulation," Energy, Elsevier, vol. 274(C).
    12. Ceylin Şirin & Fatih Selimefendigil & Hakan Fehmi Öztop, 2023. "Performance Analysis and Identification of an Indirect Photovoltaic Thermal Dryer with Aluminum Oxide Nano-Embedded Thermal Energy Storage Modification," Sustainability, MDPI, vol. 15(3), pages 1-27, January.
    13. Tahan Latibari, Sara & Mehrali, Mohammad & Mehrali, Mehdi & Afifi, Amalina Binti Muhammad & Mahlia, Teuku Meurah Indra & Akhiani, Amir Reza & Metselaar, Hendrik Simon Cornelis, 2015. "Facile synthesis and thermal performances of stearic acid/titania core/shell nanocapsules by sol–gel method," Energy, Elsevier, vol. 85(C), pages 635-644.
    14. Kazemian, Arash & Khatibi, Meysam & Entezari, Soroush & Ma, Tao & Yang, Hongxing, 2023. "Efficient energy generation and thermal storage in a photovoltaic thermal system partially covered by solar cells and integrated with organic phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    15. Tang, Xiaofen & Li, Wei & Zhang, Xingxiang & Shi, Haifeng, 2014. "Fabrication and characterization of microencapsulated phase change material with low supercooling for thermal energy storage," Energy, Elsevier, vol. 68(C), pages 160-166.
    16. Enas Taha Sayed & Hegazy Rezk & Abdul Ghani Olabi & Mohamed R. Gomaa & Yahia B. Hassan & Shek Mohammad Atiqure Rahman & Sheikh Khaleduzzaman Shah & Mohammad Ali Abdelkareem, 2022. "Application of Artificial Intelligence to Improve the Thermal Energy and Exergy of Nanofluid-Based PV Thermal/Nano-Enhanced Phase Change Material," Energies, MDPI, vol. 15(22), pages 1-13, November.
    17. Soares, N. & Matias, T. & Durães, L. & Simões, P.N. & Costa, J.J., 2023. "Thermophysical characterization of paraffin-based PCMs for low temperature thermal energy storage applications for buildings," Energy, Elsevier, vol. 269(C).
    18. Yang, Xiaohu & Yu, Jiabang & Xiao, Tian & Hu, Zehuan & He, Ya-Ling, 2020. "Design and operating evaluation of a finned shell-and-tube thermal energy storage unit filled with metal foam," Applied Energy, Elsevier, vol. 261(C).
    19. Al-Shannaq, Refat & Kurdi, Jamal & Al-Muhtaseb, Shaheen & Dickinson, Michelle & Farid, Mohammed, 2015. "Supercooling elimination of phase change materials (PCMs) microcapsules," Energy, Elsevier, vol. 87(C), pages 654-662.
    20. Hooshmandzade, Niusha & Motevali, Ali & Reza Mousavi Seyedi, Seyed & Biparva, Pouria, 2021. "Influence of single and hybrid water-based nanofluids on performance of microgrid photovoltaic/thermal system," Applied Energy, Elsevier, vol. 304(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224006844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.