IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v362y2024ics0306261924003763.html
   My bibliography  Save this article

Preparation and crystallization behavior of sensitive thermochromic microencapsulated phase change materials

Author

Listed:
  • Zhang, Wenhui
  • Zhang, Hang
  • Liu, Shuhui
  • Zhang, Xingxiang
  • Li, Wei

Abstract

A novel sensitive thermo-chromic microcapsules with inorganic/organic nanoparticles-embedded composite shell was designed and synthesized, and the thermal properties, thermo-chromic performance, crystallization behavior of ethyl myristate (EM) in confined spaces were studied in this paper. As the reaction proceeded, the aminated silica (NH2-SiO2) nanoparticles modified outer shell in the aqueous phase and isophorone diisocyanate (IPDI) in the oil phase gradually self-assembled at the inner interface, leading to the formation of an inorganic/organic polymers composite shell. The effect of NH2-SiO2 nanoparticles content on the crystallization behavior, microstructure, morphology, and phase-change properties as well as the thermal stability of MPCMs were investigated in detail. Interestingly, the covalent attachment of NH2-SiO2 nanoparticles on the capsules surface offered long-term chemical stability compared to that of conventional physical adsorption. The NH2-SiO2 nanoparticles were found distributed uniformly on the surface of MPCMs, and the onset crystallization temperature of MPCMs increased by 7.3 °C with NH2-SiO2 nanoparticles addition of 15% content, which counteracts the super-cooling phenomenon. Microcapsule temperature change optical microscopy and non-isothermal crystallization kinetics revealed that the crystallization of RS-MPCMs were homogeneous as well. RS-MPCMs have significant potential in green energy applications due to their latent heat storage, thermal stability, thermal conductivity, leakage prevention, and mechanical properties.

Suggested Citation

  • Zhang, Wenhui & Zhang, Hang & Liu, Shuhui & Zhang, Xingxiang & Li, Wei, 2024. "Preparation and crystallization behavior of sensitive thermochromic microencapsulated phase change materials," Applied Energy, Elsevier, vol. 362(C).
  • Handle: RePEc:eee:appene:v:362:y:2024:i:c:s0306261924003763
    DOI: 10.1016/j.apenergy.2024.122993
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924003763
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122993?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Shaofeng & Gao, Yan & Han, Na & Zhang, XingXiang & Li, Wei, 2021. "Reversible photochromic energy storage polyurea microcapsules via in-situ polymerization," Energy, Elsevier, vol. 219(C).
    2. Wang, Tingyu & Wang, Shuangfeng & Luo, Ruilian & Zhu, Chunyu & Akiyama, Tomohiro & Zhang, Zhengguo, 2016. "Microencapsulation of phase change materials with binary cores and calcium carbonate shell for thermal energy storage," Applied Energy, Elsevier, vol. 171(C), pages 113-119.
    3. Zhang, Ya & Liu, Huan & Niu, Jinfei & Wang, Xiaodong & Wu, Dezhen, 2020. "Development of reversible and durable thermochromic phase-change microcapsules for real-time indication of thermal energy storage and management," Applied Energy, Elsevier, vol. 264(C).
    4. Geng, Xiaoye & Li, Wei & Yin, Qing & Wang, Yu & Han, Na & Wang, Ning & Bian, Junmin & Wang, Jianping & Zhang, Xingxiang, 2018. "Design and fabrication of reversible thermochromic microencapsulated phase change materials for thermal energy storage and its antibacterial activity," Energy, Elsevier, vol. 159(C), pages 857-869.
    5. Li, Chaoen & Yu, Hang & Song, Yuan & Liang, Hao & Yan, Xun, 2019. "Preparation and characterization of PMMA/TiO2 hybrid shell microencapsulated PCMs for thermal energy storage," Energy, Elsevier, vol. 167(C), pages 1031-1039.
    6. Pu, Liang & Xu, Lingling & Zhang, Shengqi & Li, Yanzhong, 2019. "Optimization of ground heat exchanger using microencapsulated phase change material slurry based on tree-shaped structure," Applied Energy, Elsevier, vol. 240(C), pages 860-869.
    7. Konuklu, Yeliz & Akar, Hasan Burak, 2023. "Promising palmitic acid/poly(allyl methacrylate) microcapsules for thermal management applications," Energy, Elsevier, vol. 262(PB).
    8. Milián, Yanio E. & Gutiérrez, Andrea & Grágeda, Mario & Ushak, Svetlana, 2017. "A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 983-999.
    9. Sun, Kun & Liu, Huan & Wang, Xiaodong & Wu, Dezhen, 2019. "Innovative design of superhydrophobic thermal energy-storage materials by microencapsulation of n-docosane with nanostructured ZnO/SiO2 shell," Applied Energy, Elsevier, vol. 237(C), pages 549-565.
    10. Jamekhorshid, A. & Sadrameli, S.M. & Farid, M., 2014. "A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 531-542.
    11. Zhao, Aiqin & An, Jinliang & Yang, Jinglei & Yang, En-Hua, 2018. "Microencapsulated phase change materials with composite titania-polyurea (TiO2-PUA) shell," Applied Energy, Elsevier, vol. 215(C), pages 468-478.
    12. Huo, Jin-hua & Peng, Zhi-gang & Xu, Kun & Feng, Qian & Xu, De-yang, 2019. "Novel micro-encapsulated phase change materials with low melting point slurry: Characterization and cementing application," Energy, Elsevier, vol. 186(C).
    13. Zhang, H.L. & Baeyens, J. & Degrève, J. & Cáceres, G. & Segal, R. & Pitié, F., 2014. "Latent heat storage with tubular-encapsulated phase change materials (PCMs)," Energy, Elsevier, vol. 76(C), pages 66-72.
    14. Umair, Malik Muhammad & Zhang, Yuang & Iqbal, Kashif & Zhang, Shufen & Tang, Bingtao, 2019. "Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review," Applied Energy, Elsevier, vol. 235(C), pages 846-873.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Umair, Malik Muhammad & Zhang, Yuang & Iqbal, Kashif & Zhang, Shufen & Tang, Bingtao, 2019. "Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review," Applied Energy, Elsevier, vol. 235(C), pages 846-873.
    2. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    3. Lin, Yaxue & Jia, Yuting & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2730-2742.
    4. Zhang, Ya & Liu, Huan & Niu, Jinfei & Wang, Xiaodong & Wu, Dezhen, 2020. "Development of reversible and durable thermochromic phase-change microcapsules for real-time indication of thermal energy storage and management," Applied Energy, Elsevier, vol. 264(C).
    5. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Gao, Wei & Liu, Feifan & Yu, Cheng & Chen, Yongping & Liu, Xiangdong, 2023. "Microfluidic method–based encapsulated phase change materials: Fundamentals, progress, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    7. Su, Weiguang & Hu, Meiyong & Wang, Li & Kokogiannakis, Georgios & Chen, Jun & Gao, Liying & Li, Anqing & Xu, Chonghai, 2022. "Microencapsulated phase change materials with graphene-based materials: Fabrication, characterisation and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Nikpourian, Hediyeh & Bahramian, Ahmad Reza & Abdollahi, Mahdi, 2020. "On the thermal performance of a novel PCM nanocapsule: The effect of core/shell," Renewable Energy, Elsevier, vol. 151(C), pages 322-331.
    9. Chinnasamy, Veerakumar & Heo, Jaehyeok & Jung, Sungyong & Lee, Hoseong & Cho, Honghyun, 2023. "Shape stabilized phase change materials based on different support structures for thermal energy storage applications–A review," Energy, Elsevier, vol. 262(PB).
    10. He, Lijuan & Mo, Songping & Lin, Pengcheng & Jia, Lisi & Chen, Ying & Cheng, Zhengdong, 2020. "D-mannitol@silica/graphene oxide nanoencapsulated phase change material with high phase change properties and thermal reliability," Applied Energy, Elsevier, vol. 268(C).
    11. Zhang, Yi & Tao, Wen & Wang, Kehan & Li, Dongxu, 2020. "Analysis of thermal properties of gypsum materials incorporated with microencapsulated phase change materials based on silica," Renewable Energy, Elsevier, vol. 149(C), pages 400-408.
    12. Drissi, Sarra & Ling, Tung-Chai & Mo, Kim Hung & Eddhahak, Anissa, 2019. "A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 467-484.
    13. Han, Pengju & Yu, Bo & Zhao, Xu & Liu, Changhui & nie, Gao Wei & Chen, Yanfei & Li, Xiang & Shao, Weili & Liu, Fan & He, Jianxin, 2024. "Excellent interfacial compatibility of phase change capsules/polyurethane foam with enhanced mechanical and thermal insulation properties for thermal energy storage," Energy, Elsevier, vol. 294(C).
    14. Xu, Lingling & Pu, Liang & Angelo, Zarrella & Zhang, Derun & Dai, Minghao & Zhang, Shengqi, 2022. "An experimental investigation on performance of microencapsulated phase change material slurry in ground heat exchanger," Renewable Energy, Elsevier, vol. 198(C), pages 296-305.
    15. Yu, De-Hai & He, Zhi-Zhu, 2019. "Shape-remodeled macrocapsule of phase change materials for thermal energy storage and thermal management," Applied Energy, Elsevier, vol. 247(C), pages 503-516.
    16. Amaral, C. & Vicente, R. & Marques, P.A.A.P. & Barros-Timmons, A., 2017. "Phase change materials and carbon nanostructures for thermal energy storage: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1212-1228.
    17. Franco Dominici & Adio Miliozzi & Luigi Torre, 2021. "Thermal Properties of Shape-Stabilized Phase Change Materials Based on Porous Supports for Thermal Energy Storage," Energies, MDPI, vol. 14(21), pages 1-16, November.
    18. Yu, Qinghua & Jiang, Zhu & Cong, Lin & Lu, Tiejun & Suleiman, Bilyaminu & Leng, Guanghui & Wu, Zhentao & Ding, Yulong & Li, Yongliang, 2019. "A novel low-temperature fabrication approach of composite phase change materials for high temperature thermal energy storage," Applied Energy, Elsevier, vol. 237(C), pages 367-377.
    19. Lu, Wei & Yu, Anqi & Dong, Hao & He, Zhenglong & Liang, Yuntao & Liu, Weitao & Sun, Yong & Song, Shuanglin, 2023. "High-performance palmityl palmitate phase change microcapsules for thermal energy storage and thermal regulation," Energy, Elsevier, vol. 274(C).
    20. Song, Yanlin & Zhang, Nan & Jing, Yaoge & Cao, Xiaoling & Yuan, Yanping & Haghighat, Fariborz, 2019. "Experimental and numerical investigation on dodecane/expanded graphite shape-stabilized phase change material for cold energy storage," Energy, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:362:y:2024:i:c:s0306261924003763. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.