IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v87y2015icp654-662.html
   My bibliography  Save this article

Supercooling elimination of phase change materials (PCMs) microcapsules

Author

Listed:
  • Al-Shannaq, Refat
  • Kurdi, Jamal
  • Al-Muhtaseb, Shaheen
  • Dickinson, Michelle
  • Farid, Mohammed

Abstract

Microencapsulated phase change materials (PCM) must not experience any supercooling, otherwise cannot be used in any latent heat applications. In this study Rubitherm®RT58 and1-octadecanol were selected as nucleating agents in an attempt to reduce or eliminate the supercooling issue of PCM in microcapsules. The PCM microcapsules (PCMMC) were prepared using a suspension polymerization. Fourier transformed infrared (FT-IR) measurements confirmed that RT21 has been successfully encapsulated. Differential Scanning Calorimetry (DSC) shows that the onset crystallization temperature of PCMMC was approximately 10 °C lower than that of the non-encapsulated RT21, due to supercooling. The degree of supercooling has been reduced dramatically when either RT58 or 1-octadecanol was used. However, the addition of 1-octadecanol has a negative impact on the PCM thermal behaviour, which represented by spreading the solidification over wider range of temperature. PCM content in the microcapsule was determined using Thermal Gravimetric Analysis (TGA) and DSC measurements. TGA provided more accurate measure of the core material mass content, since the DSC measurement assume no change in the latent heat of the PCM due to the addition nucleating agent, which may not be true. SEM shows that the surface morphology of the PCMMC without a nucleating agent is a smooth. However, buckles and dimples were observed on the surface of the PCMMC when nucleating agent was introduced. The mass loss, when the capsules were place at 50 °C in oven, was higher and more significant when 1-octadecanol was added as a nucleating agent. In contrast, when Rubitherm®RT58 was used, the mass loss of the PCMMC was small and stabilized after a short period of time. The latent heat of fusion and phase transition temperatures of PCMMC containing 5 wt. % RT58 were stable even after 2000 thermal recycle.

Suggested Citation

  • Al-Shannaq, Refat & Kurdi, Jamal & Al-Muhtaseb, Shaheen & Dickinson, Michelle & Farid, Mohammed, 2015. "Supercooling elimination of phase change materials (PCMs) microcapsules," Energy, Elsevier, vol. 87(C), pages 654-662.
  • Handle: RePEc:eee:energy:v:87:y:2015:i:c:p:654-662
    DOI: 10.1016/j.energy.2015.05.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215006143
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.05.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Behzadi, S. & Farid, M.M., 2014. "Long term thermal stability of organic PCMs," Applied Energy, Elsevier, vol. 122(C), pages 11-16.
    2. Li, Wei & Zhang, Xing-xiang & Wang, Xue-chen & Tang, Guo-yi & Shi, Hai-feng, 2012. "Fabrication and morphological characterization of microencapsulated phase change materials (MicroPCMs) and macrocapsules containing MicroPCMs for thermal energy storage," Energy, Elsevier, vol. 38(1), pages 249-254.
    3. Cao, Fangyu & Yang, Bao, 2014. "Supercooling suppression of microencapsulated phase change materials by optimizing shell composition and structure," Applied Energy, Elsevier, vol. 113(C), pages 1512-1518.
    4. Qiu, Xiaolin & Li, Wei & Song, Guolin & Chu, Xiaodong & Tang, Guoyi, 2012. "Microencapsulated n-octadecane with different methylmethacrylate-based copolymer shells as phase change materials for thermal energy storage," Energy, Elsevier, vol. 46(1), pages 188-199.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alva, Guruprasad & Huang, Xiang & Liu, Lingkun & Fang, Guiyin, 2017. "Synthesis and characterization of microencapsulated myristic acid–palmitic acid eutectic mixture as phase change material for thermal energy storage," Applied Energy, Elsevier, vol. 203(C), pages 677-685.
    2. Dubey, Abhayjeet kumar & Sun, Jingyi & Choudhary, Tushar & Dash, Madhusmita & Rakshit, Dibakar & Ansari, M Zahid & Ramakrishna, Seeram & Liu, Yong & Nanda, Himansu Sekhar, 2023. "Emerging phase change materials with improved thermal efficiency for a clean and sustainable environment: An approach towards net zero," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    3. Zhang, Guanhua & Yu, Zhenjie & Cui, Guomin & Dou, Binlin & Lu, Wei & Yan, Xiaoyu, 2020. "Fabrication of a novel nano phase change material emulsion with low supercooling and enhanced thermal conductivity," Renewable Energy, Elsevier, vol. 151(C), pages 542-550.
    4. Milián, Yanio E. & Gutiérrez, Andrea & Grágeda, Mario & Ushak, Svetlana, 2017. "A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 983-999.
    5. Safari, A. & Saidur, R. & Sulaiman, F.A. & Xu, Yan & Dong, Joe, 2017. "A review on supercooling of Phase Change Materials in thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 905-919.
    6. Zhu, Yalin & Qin, Yaosong & Liang, Shuen & Chen, Keping & Tian, Chunrong & Wang, Jianhua & Luo, Xuan & Zhang, Lin, 2019. "Graphene/SiO2/n-octadecane nanoencapsulated phase change material with flower like morphology, high thermal conductivity, and suppressed supercooling," Applied Energy, Elsevier, vol. 250(C), pages 98-108.
    7. Jawaad A. Ansari & Refat Al-Shannaq & Jamal Kurdi & Shaheen A. Al-Muhtaseb & Charles A. Ikutegbe & Mohammed M. Farid, 2021. "A Rapid Method for Low Temperature Microencapsulation of Phase Change Materials (PCMs) Using a Coiled Tube Ultraviolet Reactor," Energies, MDPI, vol. 14(23), pages 1-19, November.
    8. Jiang, Fuyun & Wang, Xiaodong & Wu, Dezhen, 2016. "Magnetic microencapsulated phase change materials with an organo-silica shell: Design, synthesis and application for electromagnetic shielding and thermal regulating polyimide films," Energy, Elsevier, vol. 98(C), pages 225-239.
    9. Li, Qi & Qiao, Geng & Mura, Ernesto & Li, Chuan & Fischer, Ludger & Ding, Yulong, 2020. "Experimental and numerical studies of a fatty acid based phase change dispersion for enhancing cooling of high voltage electrical devices," Energy, Elsevier, vol. 198(C).
    10. Lin, Yaxue & Zhu, Chuqiao & Alva, Guruprasad & Fang, Guiyin, 2018. "Microencapsulation and thermal properties of myristic acid with ethyl cellulose shell for thermal energy storage," Applied Energy, Elsevier, vol. 231(C), pages 494-501.
    11. Li, Songlin & Dong, Beibei & Wang, Jinghang & Li, Juan & Shen, Tongtong & Peng, Hao & Ling, Xiang, 2019. "Synthesis and characterization of mixed alkanes microcapsules with phase change temperature below ice point for cryogenic thermal energy storage," Energy, Elsevier, vol. 187(C).
    12. Mukhamet, Tileuzhan & Kobeyev, Sultan & Nadeem, Abid & Memon, Shazim Ali, 2021. "Ranking PCMs for building façade applications using multi-criteria decision-making tools combined with energy simulations," Energy, Elsevier, vol. 215(PB).
    13. Zahir, Md. Hasan & Mohamed, Shamseldin A. & Saidur, R. & Al-Sulaiman, Fahad A., 2019. "Supercooling of phase-change materials and the techniques used to mitigate the phenomenon," Applied Energy, Elsevier, vol. 240(C), pages 793-817.
    14. Zhao, B.C. & Wang, R.Z., 2019. "Perspectives for short-term thermal energy storage using salt hydrates for building heating," Energy, Elsevier, vol. 189(C).
    15. Klimeš, Lubomír & Charvát, Pavel & Mastani Joybari, Mahmood & Zálešák, Martin & Haghighat, Fariborz & Panchabikesan, Karthik & El Mankibi, Mohamed & Yuan, Yanping, 2020. "Computer modelling and experimental investigation of phase change hysteresis of PCMs: The state-of-the-art review," Applied Energy, Elsevier, vol. 263(C).
    16. Yang, Liu & Liu, Shuli & Zheng, Hongfei, 2019. "A comprehensive review of hydrodynamic mechanisms and heat transfer characteristics for microencapsulated phase change slurry (MPCS) in circular tube," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    17. Nie, Binjian & Palacios, Anabel & Zou, Boyang & Liu, Jiaxu & Zhang, Tongtong & Li, Yunren, 2020. "Review on phase change materials for cold thermal energy storage applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    18. Su, Weiguang & Hu, Meiyong & Wang, Li & Kokogiannakis, Georgios & Chen, Jun & Gao, Liying & Li, Anqing & Xu, Chonghai, 2022. "Microencapsulated phase change materials with graphene-based materials: Fabrication, characterisation and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    19. Ahmed Elkhatat & Shaheen A. Al-Muhtaseb, 2023. "Combined “Renewable Energy–Thermal Energy Storage (RE–TES)” Systems: A Review," Energies, MDPI, vol. 16(11), pages 1-46, June.
    20. Khan, Mohammed Mumtaz A. & Saidur, R. & Al-Sulaiman, Fahad A., 2017. "A review for phase change materials (PCMs) in solar absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 105-137.
    21. Huang, Xuelin & Guo, Jing & Gong, Yumei & Li, Shenglin & Mu, Siyang & Zhang, Sen, 2017. "In-situ preparation of a shape stable phase change material," Renewable Energy, Elsevier, vol. 108(C), pages 244-249.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Safari, A. & Saidur, R. & Sulaiman, F.A. & Xu, Yan & Dong, Joe, 2017. "A review on supercooling of Phase Change Materials in thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 905-919.
    2. Sarı, Ahmet & Alkan, Cemil & Bilgin, Cahit, 2014. "Micro/nano encapsulation of some paraffin eutectic mixtures with poly(methyl methacrylate) shell: Preparation, characterization and latent heat thermal energy storage properties," Applied Energy, Elsevier, vol. 136(C), pages 217-227.
    3. Jacob, Rhys & Bruno, Frank, 2015. "Review on shell materials used in the encapsulation of phase change materials for high temperature thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 79-87.
    4. Tahan Latibari, Sara & Mehrali, Mohammad & Mehrali, Mehdi & Afifi, Amalina Binti Muhammad & Mahlia, Teuku Meurah Indra & Akhiani, Amir Reza & Metselaar, Hendrik Simon Cornelis, 2015. "Facile synthesis and thermal performances of stearic acid/titania core/shell nanocapsules by sol–gel method," Energy, Elsevier, vol. 85(C), pages 635-644.
    5. Tang, Xiaofen & Li, Wei & Zhang, Xingxiang & Shi, Haifeng, 2014. "Fabrication and characterization of microencapsulated phase change material with low supercooling for thermal energy storage," Energy, Elsevier, vol. 68(C), pages 160-166.
    6. Yataganbaba, Alptug & Ozkahraman, Bengi & Kurtbas, Irfan, 2017. "Worldwide trends on encapsulation of phase change materials: A bibliometric analysis (1990–2015)," Applied Energy, Elsevier, vol. 185(P1), pages 720-731.
    7. Kumarasamy, Karthikeyan & An, Jinliang & Yang, Jinglei & Yang, En-Hua, 2017. "Novel CFD-based numerical schemes for conduction dominant encapsulated phase change materials (EPCM) with temperature hysteresis for thermal energy storage applications," Energy, Elsevier, vol. 132(C), pages 31-40.
    8. Khan, Mohammed Mumtaz A. & Saidur, R. & Al-Sulaiman, Fahad A., 2017. "A review for phase change materials (PCMs) in solar absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 105-137.
    9. Huang, Xiang & Alva, Guruprasad & Jia, Yuting & Fang, Guiyin, 2017. "Morphological characterization and applications of phase change materials in thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 128-145.
    10. Han, Pengju & Lu, Lixin & Qiu, Xiaolin & Tang, Yali & Wang, Jun, 2015. "Preparation and characterization of macrocapsules containing microencapsulated PCMs (phase change materials) for thermal energy storage," Energy, Elsevier, vol. 91(C), pages 531-539.
    11. Li, Wenhong & Song, Guolin & Li, Shuhua & Yao, Youwei & Tang, Guoyi, 2014. "Preparation and characterization of novel MicroPCMs (microencapsulated phase-change materials) with hybrid shells via the polymerization of two alkoxy silanes," Energy, Elsevier, vol. 70(C), pages 298-306.
    12. Yin, Dezhong & Ma, Li & Liu, Jinjie & Zhang, Qiuyu, 2014. "Pickering emulsion: A novel template for microencapsulated phase change materials with polymer–silica hybrid shell," Energy, Elsevier, vol. 64(C), pages 575-581.
    13. Jiang, Fuyun & Wang, Xiaodong & Wu, Dezhen, 2016. "Magnetic microencapsulated phase change materials with an organo-silica shell: Design, synthesis and application for electromagnetic shielding and thermal regulating polyimide films," Energy, Elsevier, vol. 98(C), pages 225-239.
    14. Umair, Malik Muhammad & Zhang, Yuang & Iqbal, Kashif & Zhang, Shufen & Tang, Bingtao, 2019. "Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review," Applied Energy, Elsevier, vol. 235(C), pages 846-873.
    15. Ikutegbe, Charles A. & Farid, Mohammed M., 2020. "Application of phase change material foam composites in the built environment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    16. Evdoxia Paroutoglou & Peter Fojan & Leonid Gurevich & Göran Hultmark & Alireza Afshari, 2021. "Thermal Analysis of Organic and Nanoencapsulated Electrospun Phase Change Materials," Energies, MDPI, vol. 14(4), pages 1-15, February.
    17. Giro-Paloma, Jessica & Barreneche, Camila & Martínez, Mònica & Šumiga, Boštjan & Cabeza, Luisa F. & Fernández, A. Inés, 2015. "Comparison of phase change slurries: Physicochemical and thermal properties," Energy, Elsevier, vol. 87(C), pages 223-227.
    18. Qiu, Xiaolin & Li, Wei & Song, Guolin & Chu, Xiaodong & Tang, Guoyi, 2012. "Microencapsulated n-octadecane with different methylmethacrylate-based copolymer shells as phase change materials for thermal energy storage," Energy, Elsevier, vol. 46(1), pages 188-199.
    19. O’Connor, William E. & Warzoha, Ronald & Weigand, Rebecca & Fleischer, Amy S. & Wemhoff, Aaron P., 2014. "Thermal property prediction and measurement of organic phase change materials in the liquid phase near the melting point," Applied Energy, Elsevier, vol. 132(C), pages 496-506.
    20. Gupta, Rajan & Shinde, Shraddha & Yella, Aswani & Subramaniam, C. & Saha, Sandip K., 2020. "Thermomechanical characterisations of PTFE, PEEK, PEKK as encapsulation materials for medium temperature solar applications," Energy, Elsevier, vol. 194(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:87:y:2015:i:c:p:654-662. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.