IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v313y2022ics0306261922003130.html
   My bibliography  Save this article

Influence of enclosure filled with phase change material on photo-thermal regulation of direct absorption anaerobic reactor: Numerical and experimental study

Author

Listed:
  • Liu, Changyu
  • Sun, Yongxiang
  • Li, Dong
  • Bian, Ji
  • Wu, Yangyang
  • Li, Pengfei
  • Sun, Yong

Abstract

Direct absorption methane reactor can maintain the fermentation process of microorganism by utilizing solar absorption and scattering of media in biogas reactor to improve the slurry temperature. However, direct absorption heating alone can save the corresponding electric energy and ensure the normal fermentation process of the biogas slurry in the reactor, but there are still problems of big temperature fluctuation and low solar heat absorption efficiency. In order to improve the stability of the fermentation process, it is proposed to optimize the design of this kind of reactor by filling paraffin PCM (phase change material). In this paper, a novel transient model for simulating the photo-thermal transfer process of the reactor with PCM structure was proposed. Experimental and numerical methods were utilized to analyze the effect of PCM parameters on photo-biochemical transformation process and solar heat absorption efficiency. The results show that filling paraffin phase change material in the enclosure of direct absorption reactor can effectively improve its thermal insulation and thermal storage performance, so as to improve the rate of volatile fatty acids (VFA) and gas production by anaerobic fermentation by maximum 31.1%. The average solar heat absorption efficiency of reactor equipped with PCM is bigger than 50%. Thicknesses of 4 cm and 2 cm for side and top structure were selected, respectively.

Suggested Citation

  • Liu, Changyu & Sun, Yongxiang & Li, Dong & Bian, Ji & Wu, Yangyang & Li, Pengfei & Sun, Yong, 2022. "Influence of enclosure filled with phase change material on photo-thermal regulation of direct absorption anaerobic reactor: Numerical and experimental study," Applied Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:appene:v:313:y:2022:i:c:s0306261922003130
    DOI: 10.1016/j.apenergy.2022.118885
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922003130
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.118885?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jurado, E. & Antonopoulou, G. & Lyberatos, G. & Gavala, H.N. & Skiadas, I.V., 2016. "Continuous anaerobic digestion of swine manure: ADM1-based modelling and effect of addition of swine manure fibers pretreated with aqueous ammonia soaking," Applied Energy, Elsevier, vol. 172(C), pages 190-198.
    2. Cuce, Erdem & Riffat, Saffa B., 2015. "A state-of-the-art review on innovative glazing technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 695-714.
    3. Silva, Tiago & Vicente, Romeu & Rodrigues, Fernanda, 2016. "Literature review on the use of phase change materials in glazing and shading solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 515-535.
    4. Cascone, Ylenia & Capozzoli, Alfonso & Perino, Marco, 2018. "Optimisation analysis of PCM-enhanced opaque building envelope components for the energy retrofitting of office buildings in Mediterranean climates," Applied Energy, Elsevier, vol. 211(C), pages 929-953.
    5. Kovalovszki, Adam & Treu, Laura & Ellegaard, Lars & Luo, Gang & Angelidaki, Irini, 2020. "Modeling temperature response in bioenergy production: Novel solution to a common challenge of anaerobic digestion," Applied Energy, Elsevier, vol. 263(C).
    6. Fernández-Puratich, Harald & Rebolledo-Leiva, Ricardo & Hernández, Diógenes & Gómez-Lagos, Javier E. & Armengot-Carbo, Bruno & Oliver-Villanueva, José Vicente, 2021. "Bi-objective optimization of multiple agro-industrial wastes supply to a cogeneration system promoting local circular bioeconomy," Applied Energy, Elsevier, vol. 300(C).
    7. Grimalt-Alemany, Antonio & Asimakopoulos, Konstantinos & Skiadas, Ioannis V. & Gavala, Hariklia N., 2020. "Modeling of syngas biomethanation and catabolic route control in mesophilic and thermophilic mixed microbial consortia," Applied Energy, Elsevier, vol. 262(C).
    8. Bensmann, A. & Hanke-Rauschenbach, R. & Heyer, R. & Kohrs, F. & Benndorf, D. & Reichl, U. & Sundmacher, K., 2014. "Biological methanation of hydrogen within biogas plants: A model-based feasibility study," Applied Energy, Elsevier, vol. 134(C), pages 413-425.
    9. Chen, Xi & Yang, Hongxing & Lu, Lin, 2015. "A comprehensive review on passive design approaches in green building rating tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1425-1436.
    10. Kenisarin, Murat & Mahkamov, Khamid, 2016. "Passive thermal control in residential buildings using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 371-398.
    11. Liu, Changyu & Wu, Yangyang & Bian, Ji & Li, Dong & Liu, Xiaoyan, 2018. "Influence of PCM design parameters on thermal and optical performance of multi-layer glazed roof," Applied Energy, Elsevier, vol. 212(C), pages 151-161.
    12. Zhao, Jiamin & Hou, Tingting & Wang, Qian & Zhang, Zhenya & Lei, Zhongfang & Shimizu, Kazuya & Guo, Wenshan & Ngo, Huu Hao, 2021. "Application of biogas recirculation in anaerobic granular sludge system for multifunctional sewage sludge management with high efficacy energy recovery," Applied Energy, Elsevier, vol. 298(C).
    13. Hee, W.J. & Alghoul, M.A. & Bakhtyar, B. & Elayeb, OmKalthum & Shameri, M.A. & Alrubaih, M.S. & Sopian, K., 2015. "The role of window glazing on daylighting and energy saving in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 323-343.
    14. Meng, Fanran & Dornau, Aritha & Mcqueen Mason, Simon J. & Thomas, Gavin H. & Conradie, Alex & McKechnie, Jon, 2021. "Bioethanol from autoclaved municipal solid waste: Assessment of environmental and financial viability under policy contexts," Applied Energy, Elsevier, vol. 298(C).
    15. Massimiliano Mazzanti & Marco Modica & Andrea Rampa, 2021. "The Biogas dilemma: an analysis on the Social Approval of large new plants," SEEDS Working Papers 0221, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Apr 2021.
    16. Gaballah, Eid S. & Abdelkader, Tarek Kh & Luo, Shuai & Yuan, Qiaoxia & El-Fatah Abomohra, Abd, 2020. "Enhancement of biogas production by integrated solar heating system: A pilot study using tubular digester," Energy, Elsevier, vol. 193(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ran, Peng & Ou, YiFan & Zhang, ChunYu & Chen, YuTong, 2024. "Energy, exergy, economic, and life cycle environmental analysis of a novel biogas-fueled solid oxide fuel cell hybrid power generation system assisted with solar thermal energy storage unit," Applied Energy, Elsevier, vol. 358(C).
    2. Han, Pengju & Yu, Bo & Zhao, Xu & Liu, Changhui & nie, Gao Wei & Chen, Yanfei & Li, Xiang & Shao, Weili & Liu, Fan & He, Jianxin, 2024. "Excellent interfacial compatibility of phase change capsules/polyurethane foam with enhanced mechanical and thermal insulation properties for thermal energy storage," Energy, Elsevier, vol. 294(C).
    3. Zuo, Peixian & Liu, Zhong & Zhang, Hua & Dai, Dasong & Fu, Ziyan & Corker, Jorge & Fan, Mizi, 2023. "Formulation and phase change mechanism of Capric acid/Octadecanol binary composite phase change materials," Energy, Elsevier, vol. 270(C).
    4. Marcin Zieliński & Joanna Kazimierowicz & Marcin Dębowski, 2022. "Advantages and Limitations of Anaerobic Wastewater Treatment—Technological Basics, Development Directions, and Technological Innovations," Energies, MDPI, vol. 16(1), pages 1-39, December.
    5. Liu, Changyu & Sun, Yongxiang & Bian, Ji & Hu, Wanyu & Zhang, Chengjun & Wu, Yangyang & Li, Pengfei & Li, Dong, 2023. "Mechanism of solar photo-thermal transformation for baffled liquid on energy and mass transfer efficiency in direct absorption anaerobic reactor," Energy, Elsevier, vol. 278(PA).
    6. Feng Zhen & Yuwan Pang & Tao Xing & Hongqiong Zhang & Yonghua Xu & Wenzhe Li & Yong Sun, 2022. "Effect of Phase Change Materials and Phase Change Temperature on Optimization of Design Parameters of Anaerobic Reactor Thermal Insulation Structure," IJERPH, MDPI, vol. 19(15), pages 1-10, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Changyu & Wu, Yangyang & Bian, Ji & Li, Dong & Liu, Xiaoyan, 2018. "Influence of PCM design parameters on thermal and optical performance of multi-layer glazed roof," Applied Energy, Elsevier, vol. 212(C), pages 151-161.
    2. Soares, N. & Santos, P. & Gervásio, H. & Costa, J.J. & Simões da Silva, L., 2017. "Energy efficiency and thermal performance of lightweight steel-framed (LSF) construction: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 194-209.
    3. Michaux, Ghislain & Greffet, Rémy & Salagnac, Patrick & Ridoret, Jean-Baptiste, 2019. "Modelling of an airflow window and numerical investigation of its thermal performances by comparison to conventional double and triple-glazed windows," Applied Energy, Elsevier, vol. 242(C), pages 27-45.
    4. Souayfane, Farah & Biwole, Pascal Henry & Fardoun, Farouk & Achard, Patrick, 2019. "Energy performance and economic analysis of a TIM-PCM wall under different climates," Energy, Elsevier, vol. 169(C), pages 1274-1291.
    5. Rafael Herrera-Limones & Ángel Luis León-Rodríguez & Álvaro López-Escamilla, 2019. "Solar Decathlon Latin America and Caribbean: Comfort and the Balance between Passive and Active Design," Sustainability, MDPI, vol. 11(13), pages 1-17, June.
    6. Joana Fernandes & Maria Catarina Santos & Rui Castro, 2021. "Introductory Review of Energy Efficiency in Buildings Retrofits," Energies, MDPI, vol. 14(23), pages 1-18, December.
    7. Karunathilake, Hirushie & Hewage, Kasun & Sadiq, Rehan, 2018. "Opportunities and challenges in energy demand reduction for Canadian residential sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2005-2016.
    8. Marchini, F. & Chiatti, C. & Fabiani, C. & Pisello, A.L., 2023. "Development of an innovative translucent–photoluminescent coating for smart windows applications: An experimental and numerical investigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    9. Saman Abolghasemi Moghaddam & Catarina Serra & Manuel Gameiro da Silva & Nuno Simões, 2023. "Comprehensive Review and Analysis of Glazing Systems towards Nearly Zero-Energy Buildings: Energy Performance, Thermal Comfort, Cost-Effectiveness, and Environmental Impact Perspectives," Energies, MDPI, vol. 16(17), pages 1-30, August.
    10. Amaral, C. & Silva, T. & Mohseni, F. & Amaral, J.S. & Amaral, V.S. & Marques, P.A.A.P. & Barros-Timmons, A. & Vicente, R., 2021. "Experimental and numerical analysis of the thermal performance of polyurethane foams panels incorporating phase change material," Energy, Elsevier, vol. 216(C).
    11. Li, Chunying & Tang, Haida, 2024. "Phase change material window for dynamic energy flow regulation: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    12. Qiong He & S. Thomas Ng & Md. Uzzal Hossain & Martin Skitmore, 2019. "Energy-Efficient Window Retrofit for High-Rise Residential Buildings in Different Climatic Zones of China," Sustainability, MDPI, vol. 11(22), pages 1-19, November.
    13. Bjørn Petter Jelle, 2015. "Building Integrated Photovoltaics: A Concise Description of the Current State of the Art and Possible Research Pathways," Energies, MDPI, vol. 9(1), pages 1-30, December.
    14. Cuce, Erdem & Harjunowibowo, Dewanto & Cuce, Pinar Mert, 2016. "Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 34-59.
    15. Tettey, Uniben Yao Ayikoe & Dodoo, Ambrose & Gustavsson, Leif, 2016. "Primary energy implications of different design strategies for an apartment building," Energy, Elsevier, vol. 104(C), pages 132-148.
    16. Ali Bahadori-Jahromi & Abdulazeez Rotimi & Anastasia Mylona & Paulina Godfrey & Darren Cook, 2017. "Impact of Window Films on the Overall Energy Consumption of Existing UK Hotel Buildings," Sustainability, MDPI, vol. 9(5), pages 1-23, May.
    17. Akeiber, Hussein & Nejat, Payam & Majid, Muhd Zaimi Abd. & Wahid, Mazlan A. & Jomehzadeh, Fatemeh & Zeynali Famileh, Iman & Calautit, John Kaiser & Hughes, Ben Richard & Zaki, Sheikh Ahmad, 2016. "A review on phase change material (PCM) for sustainable passive cooling in building envelopes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1470-1497.
    18. Zhang, Shu & Hu, Wanyu & Li, Dong & Zhang, Chengjun & Arıcı, Müslüm & Yıldız, Çağatay & Zhang, Xin & Ma, Yuxin, 2021. "Energy efficiency optimization of PCM and aerogel-filled multiple glazing windows," Energy, Elsevier, vol. 222(C).
    19. Uetsuji, Yasutomo & Yasuda, Yuta & Yamauchi, Shugo & Matsushima, Eiji & Adachi, Maki & Fuji, Masayoshi & Ito, Hirokazu, 2021. "Multiscale study on thermal insulating effect of a hollow silica-coated polycarbonate window for residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    20. Buonomano, Annamaria & Guarino, Francesco, 2020. "The impact of thermophysical properties and hysteresis effects on the energy performance simulation of PCM wallboards: Experimental studies, modelling, and validation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:313:y:2022:i:c:s0306261922003130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.