IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v138y2017icp147-156.html
   My bibliography  Save this article

Open-cell foams for thermoacoustic applications

Author

Listed:
  • Napolitano, Marialuisa
  • Romano, Rosario
  • Dragonetti, Raffaele

Abstract

In this work the thermoacoustic performance of a stack realized with open-cell foam is analysed. Starting from the elementary cell and its strut parameters the pore structure has been investigated to improve the power conversion inside a standing-wave thermoacoustic engine. The so called “Johnson-Champoux-Allard” model is used for this scope. Results are compared with those provided by ordinary stack realized with straight pores whose cross-sections have regular shapes (i.e. circular, parallel plate). Since thermoacoustic performance is strongly affected by stack properties (such as its length, its porosity, the geometry, the shape of its pores, the operating frequency as well as the type of material), an optimization procedure has been used to optimize the thermoacoustic engine performance for the same working conditions (thermal power provided by the heat exchangers and the related temperatures).

Suggested Citation

  • Napolitano, Marialuisa & Romano, Rosario & Dragonetti, Raffaele, 2017. "Open-cell foams for thermoacoustic applications," Energy, Elsevier, vol. 138(C), pages 147-156.
  • Handle: RePEc:eee:energy:v:138:y:2017:i:c:p:147-156
    DOI: 10.1016/j.energy.2017.07.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217312173
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.07.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Zhibin & Jaworski, Artur J. & Backhaus, Scott, 2012. "Travelling-wave thermoacoustic electricity generator using an ultra-compliant alternator for utilization of low-grade thermal energy," Applied Energy, Elsevier, vol. 99(C), pages 135-145.
    2. Wu, Zhanghua & Yu, Guoyao & Zhang, Limin & Dai, Wei & Luo, Ercang, 2014. "Development of a 3kW double-acting thermoacoustic Stirling electric generator," Applied Energy, Elsevier, vol. 136(C), pages 866-872.
    3. Bi, Tianjiao & Wu, Zhanghua & Zhang, Limin & Yu, Guoyao & Luo, Ercang & Dai, Wei, 2017. "Development of a 5kW traveling-wave thermoacoustic electric generator," Applied Energy, Elsevier, vol. 185(P2), pages 1355-1361.
    4. S. Backhaus & G. W. Swift, 1999. "A thermoacoustic Stirling heat engine," Nature, Nature, vol. 399(6734), pages 335-338, May.
    5. Wang, Kai & Sun, Daming & Zhang, Jie & Xu, Ya & Luo, Kai & Zhang, Ning & Zou, Jiang & Qiu, Limin, 2016. "An acoustically matched traveling-wave thermoacoustic generator achieving 750 W electric power," Energy, Elsevier, vol. 103(C), pages 313-321.
    6. Yang, Zhao & Zhuo, Yang & Ercang, Luo & Yuan, Zhou, 2014. "Travelling-wave thermoacoustic high-temperature heat pump for industrial waste heat recovery," Energy, Elsevier, vol. 77(C), pages 397-402.
    7. Jin, Tao & Huang, Jiale & Feng, Ye & Yang, Rui & Tang, Ke & Radebaugh, Ray, 2015. "Thermoacoustic prime movers and refrigerators: Thermally powered engines without moving components," Energy, Elsevier, vol. 93(P1), pages 828-853.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han, Pengju & Yu, Bo & Zhao, Xu & Liu, Changhui & nie, Gao Wei & Chen, Yanfei & Li, Xiang & Shao, Weili & Liu, Fan & He, Jianxin, 2024. "Excellent interfacial compatibility of phase change capsules/polyurethane foam with enhanced mechanical and thermal insulation properties for thermal energy storage," Energy, Elsevier, vol. 294(C).
    2. Wang, Kai & Dong, Huzi & Wang, Long & Zhao, Wei & Wang, Yanhai & Guo, Haijun & Zang, Jie & Fan, Long & Zhang, Xiaolei, 2023. "Temperature-induced micropore structure alteration of raw coal and its implications for optimizing the degassing temperature in pore characterization," Energy, Elsevier, vol. 268(C).
    3. Fabio Auriemma & Elio Di Giulio & Marialuisa Napolitano & Raffaele Dragonetti, 2020. "Porous Cores in Small Thermoacoustic Devices for Building Applications," Energies, MDPI, vol. 13(11), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Kai & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Thermoacoustic Stirling power generation from LNG cold energy and low-temperature waste heat," Energy, Elsevier, vol. 127(C), pages 280-290.
    2. Jin, Tao & Yang, Rui & Wang, Yi & Liu, Yuanliang & Feng, Ye, 2016. "Phase adjustment analysis and performance of a looped thermoacoustic prime mover with compliance/resistance tube," Applied Energy, Elsevier, vol. 183(C), pages 290-298.
    3. Chen, Geng & Tang, Lihua & Mace, Brian & Yu, Zhibin, 2021. "Multi-physics coupling in thermoacoustic devices: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    4. Xu, Jingyuan & Hu, Jianying & Sun, Yanlei & Wang, Huizhi & Wu, Zhanghua & Hu, Jiangfeng & Hochgreb, Simone & Luo, Ercang, 2020. "A cascade-looped thermoacoustic driven cryocooler with different-diameter resonance tubes. Part Ⅱ: Experimental study and comparison," Energy, Elsevier, vol. 207(C).
    5. Hamood, Ahmed & Jaworski, Artur J. & Mao, Xiaoan & Simpson, Kevin, 2018. "Design and construction of a two-stage thermoacoustic electricity generator with push-pull linear alternator," Energy, Elsevier, vol. 144(C), pages 61-72.
    6. Xiao, Lei & Luo, Kaiqi & Zhao, Dan & Chen, Geng & Bi, Tianjiao & Xu, Jingyuan & Luo, Ercang, 2023. "Time-domain acoustic-electrical analogy investigation on a high-power traveling-wave thermoacoustic electric generator," Energy, Elsevier, vol. 263(PE).
    7. Al-Kayiem, Ali & Yu, Zhibin, 2016. "Numerical investigation of a looped-tube travelling-wave thermoacoustic engine with a bypass pipe," Energy, Elsevier, vol. 112(C), pages 111-120.
    8. Zhu, Shunmin & Wang, Tong & Jiang, Chao & Wu, Zhanghua & Yu, Guoyao & Hu, Jianying & Markides, Christos N. & Luo, Ercang, 2023. "Experimental and numerical study of a liquid metal magnetohydrodynamic generator for thermoacoustic power generation," Applied Energy, Elsevier, vol. 348(C).
    9. Xu, Jingyuan & Luo, Ercang & Hochgreb, Simone, 2021. "A thermoacoustic combined cooling, heating, and power (CCHP) system for waste heat and LNG cold energy recovery," Energy, Elsevier, vol. 227(C).
    10. Kisha, Wigdan & Riley, Paul & McKechnie, Jon & Hann, David, 2021. "Asymmetrically heated multi-stage travelling-wave thermoacoustic electricity generator," Energy, Elsevier, vol. 235(C).
    11. Bi, Tianjiao & Wu, Zhanghua & Zhang, Limin & Yu, Guoyao & Luo, Ercang & Dai, Wei, 2017. "Development of a 5kW traveling-wave thermoacoustic electric generator," Applied Energy, Elsevier, vol. 185(P2), pages 1355-1361.
    12. Wang, Kai & Sanders, Seth R. & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2016. "Stirling cycle engines for recovering low and moderate temperature heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 89-108.
    13. Kang, Huifang & Cheng, Peng & Yu, Zhibin & Zheng, Hongfei, 2015. "A two-stage traveling-wave thermoacoustic electric generator with loudspeakers as alternators," Applied Energy, Elsevier, vol. 137(C), pages 9-17.
    14. Bi, Tianjiao & Wu, Zhanghua & Chen, Wei & Zhang, Limin & Luo, Ercang & Zhang, Bin, 2022. "Numerical and experimental research on a high-power 4-stage looped travelling-wave thermoacoustic electric generator," Energy, Elsevier, vol. 239(PB).
    15. Callanan, J. & Nouh, M., 2019. "Optimal thermoacoustic energy extraction via temporal phase control and traveling wave generation," Applied Energy, Elsevier, vol. 241(C), pages 599-612.
    16. Tavakolpour-Saleh, A.R. & Zare, Shahryar, 2021. "Justifying performance of thermo-acoustic Stirling engines based on a novel lumped mechanical model," Energy, Elsevier, vol. 227(C).
    17. Xiao, Lei & Luo, Kaiqi & Chi, Jiaxin & Chen, Geng & Wu, Zhanghua & Luo, Ercang & Xu, Jingyuan, 2023. "Study on a direct-coupling thermoacoustic refrigerator using time-domain acoustic-electrical analogy method," Applied Energy, Elsevier, vol. 339(C).
    18. Yang, Rui & Meir, Avishai & Ramon, Guy Z., 2022. "A standing-wave, phase-change thermoacoustic engine: Experiments and model projections," Energy, Elsevier, vol. 258(C).
    19. Hu, J.Y. & Luo, E.C. & Zhang, L.M. & Chen, Y.Y. & Wu, Z.H. & Gao, B., 2018. "Analysis of a displacer-coupled multi-stage thermoacoustic-Stirling engine," Energy, Elsevier, vol. 145(C), pages 507-514.
    20. Hu, Yiwei & Luo, Kaiqi & Zhao, Dan & Chi, Jiaxin & Chen, Geng & Chen, Yuanhang & Luo, Ercang & Xu, Jingyuan, 2024. "Thermoacoustic micro-CHP system for low-grade thermal energy utilization in residential buildings," Energy, Elsevier, vol. 298(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:138:y:2017:i:c:p:147-156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.