IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v293y2024ics036054422400450x.html
   My bibliography  Save this article

Multi-power sources joint optimal scheduling model considering nuclear power peak regulation

Author

Listed:
  • Guo, Qisheng
  • Wu, Xi
  • Cai, Hui
  • Cheng, Liang
  • Huang, Junhui
  • Liu, Yichen
  • Chen, Kangwen

Abstract

Nuclear power peak regulation is an effective means to alleviate the difficult situation of peak regulation, adapt to the high penetration of photovoltaic power, and solve the problem of increasing load peak-to-valley difference. However, the peak regulation cost quantification model of nuclear power is not yet complete, the safety constraints of nuclear power peak regulation are not accurate enough, and the unit combination is not comprehensive enough. Therefore, this paper proposes a nuclear-photovoltaic-energy storage-pumped storage-thermal multi-power sources joint optimal scheduling model considering nuclear power peak regulation. Among them, a multi-gear flexible peak regulation model is established based on the operation characteristics of nuclear power peak regulation; the peak regulation cost of nuclear power is quantitatively analyzed from various factors; the power path linear constraint is supplemented and optimized, which strictly guarantees the safe output of nuclear power. In addition, under the background of large-scale nuclear and photovoltaic power integration, the joint coordinated operation of multi-power sources including nuclear and photovoltaic power is studied. The example simulation verifies that the proposed model significantly optimizes nuclear power peak regulation mode, promotes photovoltaic power consumption, alleviates peak regulation pressure, and improves the system's economic level.

Suggested Citation

  • Guo, Qisheng & Wu, Xi & Cai, Hui & Cheng, Liang & Huang, Junhui & Liu, Yichen & Chen, Kangwen, 2024. "Multi-power sources joint optimal scheduling model considering nuclear power peak regulation," Energy, Elsevier, vol. 293(C).
  • Handle: RePEc:eee:energy:v:293:y:2024:i:c:s036054422400450x
    DOI: 10.1016/j.energy.2024.130678
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422400450X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130678?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jurasz, Jakub & Piasecki, Adam & Hunt, Julian & Zheng, Wandong & Ma, Tao & Kies, Alexander, 2022. "Building integrated pumped-storage potential on a city scale: An analysis based on geographic information systems," Energy, Elsevier, vol. 242(C).
    2. Lynch, Arthur & Perez, Yannick & Gabriel, Sophie & Mathonniere, Gilles, 2022. "Nuclear fleet flexibility: Modeling and impacts on power systems with renewable energy," Applied Energy, Elsevier, vol. 314(C).
    3. Chen, Chen & Yuan, Haoyu & Bi, Rongshan & Wang, Na & Li, Yujiao & He, Yan & Wang, Fei, 2022. "A novel conceptual design of LNG-sourced natural gas peak-shaving with gas hydrates as the medium," Energy, Elsevier, vol. 253(C).
    4. Li, Gang & Wang, Xueqian & Liang, Bin & Li, Xiu & Zhang, Bo & Zou, Yu, 2016. "Modeling and control of nuclear reactor cores for electricity generation: A review of advanced technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 116-128.
    5. Yuan, Wenlin & Xin, Wenpeng & Su, Chengguo & Cheng, Chuntian & Yan, Denghua & Wu, Zening, 2022. "Cross-regional integrated transmission of wind power and pumped-storage hydropower considering the peak shaving demands of multiple power grids," Renewable Energy, Elsevier, vol. 190(C), pages 1112-1126.
    6. Feng, Zhong-kai & Niu, Wen-jing & Wang, Wen-chuan & Zhou, Jian-zhong & Cheng, Chun-tian, 2019. "A mixed integer linear programming model for unit commitment of thermal plants with peak shaving operation aspect in regional power grid lack of flexible hydropower energy," Energy, Elsevier, vol. 175(C), pages 618-629.
    7. Qi Liu & Jie Zhao & Youguo Shao & Libin Wen & Jianxu Wu & Dichen Liu & Yuhui Ma, 2019. "Multi-Power Joint Peak-Shaving Optimization for Power System Considering Coordinated Dispatching of Nuclear Power and Wind Power," Sustainability, MDPI, vol. 11(17), pages 1-23, September.
    8. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian & Zhou, Jian-zhong, 2017. "Peak shaving operation of hydro-thermal-nuclear plants serving multiple power grids by linear programming," Energy, Elsevier, vol. 135(C), pages 210-219.
    9. Cany, C. & Mansilla, C. & Mathonnière, G. & da Costa, P., 2018. "Nuclear power supply: Going against the misconceptions. Evidence of nuclear flexibility from the French experience," Energy, Elsevier, vol. 151(C), pages 289-296.
    10. Lin, Boqiang & Xie, Yongjing, 2022. "Analysis on operational efficiency and its influencing factors of China’s nuclear power plants," Energy, Elsevier, vol. 261(PA).
    11. Jan-Horst Keppler & Stefan Lorenczik, 2020. "Projected Costs of Generating Electricity: 2020 Edition," Working Papers hal-03998435, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodica Loisel & Lionel Lemiale & Silvana Mima & Adrien Bidaud, 2022. "Strategies for short-term intermittency in long-term prospective scenarios in the French power system," Post-Print hal-04568072, HAL.
    2. Loisel, Rodica & Lemiale, Lionel & Mima, Silvana & Bidaud, Adrien, 2022. "Strategies for short-term intermittency in long-term prospective scenarios in the French power system," Energy Policy, Elsevier, vol. 169(C).
    3. Xianliang Cheng & Suzhen Feng & Yanxuan Huang & Jinwen Wang, 2021. "A New Peak-Shaving Model Based on Mixed Integer Linear Programming with Variable Peak-Shaving Order," Energies, MDPI, vol. 14(4), pages 1-15, February.
    4. Dong, Zhe & Liu, Miao & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2019. "Automatic generation control for the flexible operation of multimodular high temperature gas-cooled reactor plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 11-31.
    5. Zhongkai Feng & Wenjing Niu & Sen Wang & Chuntian Cheng & Zhenguo Song, 2019. "Mixed Integer Linear Programming Model for Peak Operation of Gas-Fired Generating Units with Disjoint-Prohibited Operating Zones," Energies, MDPI, vol. 12(11), pages 1-17, June.
    6. Zhe Dong & Miao Liu & Di Jiang & Xiaojin Huang & Yajun Zhang & Zuoyi Zhang, 2018. "Automatic Generation Control of Nuclear Heating Reactor Power Plants," Energies, MDPI, vol. 11(10), pages 1-18, October.
    7. Shuai Liu & Zhong-Kai Feng & Wen-Jing Niu & Hai-Rong Zhang & Zhen-Guo Song, 2019. "Peak Operation Problem Solving for Hydropower Reservoirs by Elite-Guide Sine Cosine Algorithm with Gaussian Local Search and Random Mutation," Energies, MDPI, vol. 12(11), pages 1-24, June.
    8. Qi Liu & Jie Zhao & Youguo Shao & Libin Wen & Jianxu Wu & Dichen Liu & Yuhui Ma, 2019. "Multi-Power Joint Peak-Shaving Optimization for Power System Considering Coordinated Dispatching of Nuclear Power and Wind Power," Sustainability, MDPI, vol. 11(17), pages 1-23, September.
    9. Liao, Shengli & Yang, Hualong & Liu, Benxi & Zhao, Hongye & Liu, Huan & Ma, Xiangyu & Wu, Huijun, 2022. "Daily peak-shaving model of cascade hydropower serving multi-grids considering an HVDC channel shared constraint," Renewable Energy, Elsevier, vol. 199(C), pages 112-122.
    10. Bhattacharya, Subhadip & Banerjee, Rangan & Ramadesigan, Venkatasailanathan & Liebman, Ariel & Dargaville, Roger, 2024. "Bending the emission curve ― The role of renewables and nuclear power in achieving a net-zero power system in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    11. Rui Cao & Jianjian Shen & Chuntian Cheng & Jian Wang, 2020. "Optimization Model for the Long-Term Operation of an Interprovincial Hydropower Plant Incorporating Peak Shaving Demands," Energies, MDPI, vol. 13(18), pages 1-21, September.
    12. Ismael Guerrero & Carlos del Cañizo & Yuanjie Yu, 2024. "Yield Performance of Standard Multicrystalline, Monocrystalline, and Cast-Mono Modules in Outdoor Conditions," Energies, MDPI, vol. 17(18), pages 1-13, September.
    13. Opgrand, Jeff & Preckel, Paul V. & Sparrow, F.T. & Thomas, Gregory & Loucks, Daniel P., 2020. "Restoring the natural flow regime of a large hydroelectric complex: Costs and considerations," Energy, Elsevier, vol. 190(C).
    14. Alhadhrami, Saeed & Soto, Gabriel J & Lindley, Ben, 2023. "Dispatch analysis of flexible power operation with multi-unit small modular reactors," Energy, Elsevier, vol. 280(C).
    15. Wang, Jin & Zhao, Zhipeng & Zhou, Jinglin & Cheng, Chuntian & Su, Huaying, 2024. "Developing operating rules for a hydro–wind–solar hybrid system considering peak-shaving demands," Applied Energy, Elsevier, vol. 360(C).
    16. Wang, Runchen & Du, Xiaonan & Shi, Yuetao & Deng, Weipeng & Wang, Yuhao & Sun, Fengzhong, 2024. "A novel system for reducing power plant electricity consumption and enhancing deep peak-load capability," Energy, Elsevier, vol. 295(C).
    17. Zhao, Zhigao & Yang, Jiandong & Chung, C.Y. & Yang, Weijia & He, Xianghui & Chen, Man, 2021. "Performance enhancement of pumped storage units for system frequency support based on a novel small signal model," Energy, Elsevier, vol. 234(C).
    18. Teirilä, Juha, 2020. "The value of the nuclear power plant fleet in the German power market under the expansion of fluctuating renewables," Energy Policy, Elsevier, vol. 136(C).
    19. Wang, Tiantian & Wang, Yanhua & Wang, Ke & Fu, Sha & Ding, Li, 2024. "Five-dimensional assessment of China's centralized and distributed photovoltaic potential: From solar irradiation to CO2 mitigation," Applied Energy, Elsevier, vol. 356(C).
    20. Tee, Wei Hown & Gan, Chin Kim & Sardi, Junainah, 2024. "Benefits of energy storage systems and its potential applications in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:293:y:2024:i:c:s036054422400450x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.