IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i18p4544-d1475282.html
   My bibliography  Save this article

Yield Performance of Standard Multicrystalline, Monocrystalline, and Cast-Mono Modules in Outdoor Conditions

Author

Listed:
  • Ismael Guerrero

    (Instituto de Energia Solar, Universidad Politécnica de Madrid, 28040 Madrid, Spain)

  • Carlos del Cañizo

    (Instituto de Energia Solar, Universidad Politécnica de Madrid, 28040 Madrid, Spain)

  • Yuanjie Yu

    (CSI Solar Co., Ltd., Suzhou 215129, China)

Abstract

On the journey to reduce the cost of solar modules, several silicon-growing techniques have been explored to grow the wafers the cells are based on. The most utilized ones have been the multicrystalline silicon (mc-Si) and the monocrystalline ones, with monocrystalline grown by the Czochralski (Cz) technique being the current winner. Cast-mono (CM-Si) was also largely employed during the last decade, and there are several gigawatts (GWs) of modules on the field, but no data were shared on the performance of those modules. In this study, we put three small installations next to each other in the field consisting of 12 modules each, with the only difference being in the wafers technology employed: mc-Si, CM-Si, and CZ-Si. The first two systems have been manufactured with the same equipment and had their field performance closely monitored for three years, while the CZ-Si one has been monitored for 17 months. The performance data shared show that CM-Si performance on the field is better than mc-Si and is very similar to CZ-Si, with no abnormal degradation. CM-Si requires less energy than CZ-Si to be manufactured, and high efficiencies have been reported; the field performance suggests that it is a very valid technology that deserves further exploration.

Suggested Citation

  • Ismael Guerrero & Carlos del Cañizo & Yuanjie Yu, 2024. "Yield Performance of Standard Multicrystalline, Monocrystalline, and Cast-Mono Modules in Outdoor Conditions," Energies, MDPI, vol. 17(18), pages 1-13, September.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:18:p:4544-:d:1475282
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/18/4544/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/18/4544/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jan-Horst Keppler & Stefan Lorenczik, 2020. "Projected Costs of Generating Electricity: 2020 Edition," Working Papers hal-03998435, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Tiantian & Wang, Yanhua & Wang, Ke & Fu, Sha & Ding, Li, 2024. "Five-dimensional assessment of China's centralized and distributed photovoltaic potential: From solar irradiation to CO2 mitigation," Applied Energy, Elsevier, vol. 356(C).
    2. Phillips, K. & Moncada, J.A. & Ergun, H. & Delarue, E., 2023. "Spatial representation of renewable technologies in generation expansion planning models," Applied Energy, Elsevier, vol. 342(C).
    3. Nagel, Niels Oliver & Böhringer, Christoph & Rosendahl, Knut Einar & Bolkesjø, Torjus Folsland, 2023. "Impacts of green deal policies on the Nordic power market," Utilities Policy, Elsevier, vol. 80(C).
    4. Guo, Qisheng & Wu, Xi & Cai, Hui & Cheng, Liang & Huang, Junhui & Liu, Yichen & Chen, Kangwen, 2024. "Multi-power sources joint optimal scheduling model considering nuclear power peak regulation," Energy, Elsevier, vol. 293(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:18:p:4544-:d:1475282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.