IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v169y2022ics0301421522004037.html
   My bibliography  Save this article

Strategies for short-term intermittency in long-term prospective scenarios in the French power system

Author

Listed:
  • Loisel, Rodica
  • Lemiale, Lionel
  • Mima, Silvana
  • Bidaud, Adrien

Abstract

This paper depicts the power system adequacy with respect to nuclear strategies by coupling investment with dispatching. The long-term energy model POLES simulates the Paris Agreement worldwide and is soft-linked with a power market model applied to France, EcoNUK. The nuclear flexibility is described by cycling frequency and amplitude, constrained by reactors minimum rated power and half-hour ramping rates. Results in 2050 show that the French power system made of 26% nuclear and 71% renewables in POLES needs deeper and longer flexibility with nuclear and gas in EcoNUK, due mainly to higher granular time-steps than the prospective model; and that reactors perform more deep cycles than allowed by their license (230 instead of 200). We show that scenarios with high shares of renewables build on the arbitrage between nuclear and gas, notably during peak loads in winter and night periods. Meeting the double target to reduce nuclear and carbon emissions requires more renewables, hence significant gas and nuclear power for adequacy, facing the dilemma nuclear versus emissions. Coupling short-term operation with long-term investment indicates that nuclear flexibility varies with the time-step of intermittency modeling, so scenarios need to include reactors constraints to reach an informed decision on renewables and nuclear.

Suggested Citation

  • Loisel, Rodica & Lemiale, Lionel & Mima, Silvana & Bidaud, Adrien, 2022. "Strategies for short-term intermittency in long-term prospective scenarios in the French power system," Energy Policy, Elsevier, vol. 169(C).
  • Handle: RePEc:eee:enepol:v:169:y:2022:i:c:s0301421522004037
    DOI: 10.1016/j.enpol.2022.113182
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421522004037
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2022.113182?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Göransson, Lisa & Goop, Joel & Odenberger, Mikael & Johnsson, Filip, 2017. "Impact of thermal plant cycling on the cost-optimal composition of a regional electricity generation system," Applied Energy, Elsevier, vol. 197(C), pages 230-240.
    2. Child, Michael & Kemfert, Claudia & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 139, pages 80-101.
    3. Allard, Stéphane & Mima, Silvana & Debusschere, Vincent & Quoc, Tuan Tran & Criqui, Patrick & Hadjsaid, Nouredine, 2020. "European transmission grid expansion as a flexibility option in a scenario of large scale variable renewable energies integration," Energy Economics, Elsevier, vol. 87(C).
    4. Lynch, Arthur & Perez, Yannick & Gabriel, Sophie & Mathonniere, Gilles, 2022. "Nuclear fleet flexibility: Modeling and impacts on power systems with renewable energy," Applied Energy, Elsevier, vol. 314(C).
    5. Seck, Gondia Sokhna & Krakowski, Vincent & Assoumou, Edi & Maïzi, Nadia & Mazauric, Vincent, 2020. "Embedding power system’s reliability within a long-term Energy System Optimization Model: Linking high renewable energy integration and future grid stability for France by 2050," Applied Energy, Elsevier, vol. 257(C).
    6. Skea, Jim & van Diemen, Renée & Portugal-Pereira, Joana & Khourdajie, Alaa Al, 2021. "Outlooks, explorations and normative scenarios: Approaches to global energy futures compared," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    7. Criqui, P. & Mima, S. & Menanteau, P. & Kitous, A., 2015. "Mitigation strategies and energy technology learning: An assessment with the POLES model," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 119-136.
    8. François Benhmad & Jacques Percebois, 2017. "On the Impact of Wind Feed-in and Interconnections on Electricity Price in Germany," Post-Print hal-01837122, HAL.
    9. Criqui, Patrick & Mima, Silvana, 2012. "European climate—energy security nexus: A model based scenario analysis," Energy Policy, Elsevier, vol. 41(C), pages 827-842.
    10. Cany, C. & Mansilla, C. & Mathonnière, G. & da Costa, P., 2018. "Nuclear contribution to the penetration of variable renewable energy sources in a French decarbonised power mix," Energy, Elsevier, vol. 150(C), pages 544-555.
    11. Guerra, K. & Haro, P. & Gutiérrez, R.E. & Gómez-Barea, A., 2022. "Facing the high share of variable renewable energy in the power system: Flexibility and stability requirements," Applied Energy, Elsevier, vol. 310(C).
    12. Jenkins, J.D. & Zhou, Z. & Ponciroli, R. & Vilim, R.B. & Ganda, F. & de Sisternes, F. & Botterud, A., 2018. "The benefits of nuclear flexibility in power system operations with renewable energy," Applied Energy, Elsevier, vol. 222(C), pages 872-884.
    13. Cany, C. & Mansilla, C. & Mathonnière, G. & da Costa, P., 2018. "Nuclear power supply: Going against the misconceptions. Evidence of nuclear flexibility from the French experience," Energy, Elsevier, vol. 151(C), pages 289-296.
    14. Gondia Sokhna Seck & Vincent Krakowski & Edi Assoumou & Nadia Maïzi & Vincent Mazauric, 2020. "Embedding power system's reliability within a long-term Energy System Optimization Model: Linking high renewable energy integration and future grid stability for France by 2050," Post-Print hal-02418375, HAL.
    15. Misconel, S. & Leisen, R. & Mikurda, J. & Zimmermann, F. & Fraunholz, C. & Fichtner, W. & Möst, D. & Weber, C., 2022. "Systematic comparison of high-resolution electricity system modeling approaches focusing on investment, dispatch and generation adequacy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    16. Alimou, Yacine & Maïzi, Nadia & Bourmaud, Jean-Yves & Li, Marion, 2020. "Assessing the security of electricity supply through multi-scale modeling: The TIMES-ANTARES linking approach," Applied Energy, Elsevier, vol. 279(C).
    17. Heilmann, Erik & Klempp, Nikolai & Wetzel, Heike, 2020. "Design of regional flexibility markets for electricity: A product classification framework for and application to German pilot projects," Utilities Policy, Elsevier, vol. 67(C).
    18. Lopez, Gabriel & Aghahosseini, Arman & Child, Michael & Khalili, Siavash & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Impacts of model structure, framework, and flexibility on perspectives of 100% renewable energy transition decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    19. Behnam Zakeri & Samuli Rinne & Sanna Syri, 2015. "Wind Integration into Energy Systems with a High Share of Nuclear Power—What Are the Compromises?," Energies, MDPI, vol. 8(4), pages 1-35, March.
    20. Leurent, Martin & Da Costa, Pascal & Rämä, Miika & Persson, Urban & Jasserand, Frédéric, 2018. "Cost-benefit analysis of district heating systems using heat from nuclear plants in seven European countries," Energy, Elsevier, vol. 149(C), pages 454-472.
    21. Tapetado, Pablo & Usaola, Julio, 2019. "Capacity credits of wind and solar generation: The Spanish case," Renewable Energy, Elsevier, vol. 143(C), pages 164-175.
    22. Kraan, Oscar & Chappin, Emile & Kramer, Gert Jan & Nikolic, Igor, 2019. "The influence of the energy transition on the significance of key energy metrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 215-223.
    23. Stéphane Allard & Silvana Mima & Vincent Debusschere & Tuan Tran Quoc & Patrick Criqui & Nouredine Hadjsaid, 2020. "European transmission grid expansion as a flexibility option in a scenario of large scale variable renewable energies integration," Post-Print hal-02502378, HAL.
    24. Stéphanie Tillement & Jan Hayes, 2019. "Maintenance schedules as boundary objects for improved organizational reliability," Post-Print halshs-02065500, HAL.
    25. Patrick Criqui & Silvana Mima, 2012. "European climate -- energy security nexus: A model based scenario analysis," Post-Print halshs-00661043, HAL.
    26. Després, Jacques & Mima, Silvana & Kitous, Alban & Criqui, Patrick & Hadjsaid, Nouredine & Noirot, Isabelle, 2017. "Storage as a flexibility option in power systems with high shares of variable renewable energy sources: a POLES-based analysis," Energy Economics, Elsevier, vol. 64(C), pages 638-650.
    27. Troy, Niamh & Denny, Eleanor & O'Malley, Mark, 2010. "Base-load cycling on a system with significant wind penetration," MPRA Paper 34848, University Library of Munich, Germany.
    28. Mezősi, András & Felsmann, Balázs & Kerekes, Lajos & Szabó, László, 2020. "Coexistence of nuclear and renewables in the V4 electricity system: Friends or enemies?," Energy Policy, Elsevier, vol. 140(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamdi, Mohamed & El Salmawy, Hafez A. & Ragab, Reda, 2024. "Incorporating operational constraints into long-term energy planning: The case of the Egyptian power system under high share of renewables," Energy, Elsevier, vol. 300(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodica Loisel & Lionel Lemiale & Silvana Mima & Adrien Bidaud, 2022. "Strategies for short-term intermittency in long-term prospective scenarios in the French power system," Post-Print hal-04568072, HAL.
    2. Allard, Stéphane & Debusschere, Vincent & Mima, Silvana & Quoc, Tuan Tran & Hadjsaid, Nouredine & Criqui, Patrick, 2020. "Considering distribution grids and local flexibilities in the prospective development of the European power system by 2050," Applied Energy, Elsevier, vol. 270(C).
    3. Stéphane Allard & Vincent Debusschere & Silvana Mima & Tuan Tran Quoc & Nouredine Hadjsaid & Patrick Criqui, 2020. "Considering distribution grids and local flexibilities in the prospective development of the European power system by 2050," Post-Print hal-03133109, HAL.
    4. Liu, Jia & Chen, Xi & Yang, Hongxing & Shan, Kui, 2021. "Hybrid renewable energy applications in zero-energy buildings and communities integrating battery and hydrogen vehicle storage," Applied Energy, Elsevier, vol. 290(C).
    5. Allard, Stéphane & Mima, Silvana & Debusschere, Vincent & Quoc, Tuan Tran & Criqui, Patrick & Hadjsaid, Nouredine, 2020. "European transmission grid expansion as a flexibility option in a scenario of large scale variable renewable energies integration," Energy Economics, Elsevier, vol. 87(C).
    6. Bhattacharya, Subhadip & Banerjee, Rangan & Ramadesigan, Venkatasailanathan & Liebman, Ariel & Dargaville, Roger, 2024. "Bending the emission curve ― The role of renewables and nuclear power in achieving a net-zero power system in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    7. Mezősi, András & Felsmann, Balázs & Kerekes, Lajos & Szabó, László, 2020. "Coexistence of nuclear and renewables in the V4 electricity system: Friends or enemies?," Energy Policy, Elsevier, vol. 140(C).
    8. Alhadhrami, Saeed & Soto, Gabriel J & Lindley, Ben, 2023. "Dispatch analysis of flexible power operation with multi-unit small modular reactors," Energy, Elsevier, vol. 280(C).
    9. Pietzcker, Robert C. & Osorio, Sebastian & Rodrigues, Renato, 2021. "Tightening EU ETS targets in line with the European Green Deal: Impacts on the decarbonization of the EU power sector," Applied Energy, Elsevier, vol. 293(C).
    10. Teirilä, Juha, 2020. "The value of the nuclear power plant fleet in the German power market under the expansion of fluctuating renewables," Energy Policy, Elsevier, vol. 136(C).
    11. Wilson Pavon & Manuel Jaramillo & Juan C. Vasquez, 2023. "A Review of Modern Computational Techniques and Their Role in Power System Stability and Control," Energies, MDPI, vol. 17(1), pages 1-17, December.
    12. Potrč, Sanja & Nemet, Andreja & Čuček, Lidija & Varbanov, Petar Sabev & Kravanja, Zdravko, 2022. "Synthesis of a regenerative energy system – beyond carbon emissions neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    13. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    14. Badr Eddine Lebrouhi & Eric Schall & Bilal Lamrani & Yassine Chaibi & Tarik Kousksou, 2022. "Energy Transition in France," Sustainability, MDPI, vol. 14(10), pages 1-28, May.
    15. Thimet, P.J. & Mavromatidis, G., 2022. "Review of model-based electricity system transition scenarios: An analysis for Switzerland, Germany, France, and Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    16. Stéphane Allard & Silvana Mima & Vincent Debusschere & Tuan Tran Quoc & Patrick Criqui & Nouredine Hadjsaid, 2020. "European transmission grid expansion as a flexibility option in a scenario of large scale variable renewable energies integration," Post-Print hal-02502378, HAL.
    17. Grimm, Veronika & Sölch, Christian & Zöttl, Gregor, 2022. "Emissions reduction in a second-best world: On the long-term effects of overlapping regulations," Energy Economics, Elsevier, vol. 109(C).
    18. Li, Ru & Tang, Bao-Jun & Yu, Biying & Liao, Hua & Zhang, Chen & Wei, Yi-Ming, 2022. "Cost-optimal operation strategy for integrating large scale of renewable energy in China’s power system: From a multi-regional perspective," Applied Energy, Elsevier, vol. 325(C).
    19. Badr Eddine Lebrouhi & Éric Schall & Bilal Lamrani & Yassine Chaibi & Tarik Kousksou, 2022. "Energy Transition in France," Post-Print hal-03716839, HAL.
    20. Deng, Xu & Lv, Tao & Meng, Xiangyun & Li, Cong & Hou, Xiaoran & Xu, Jie & Wang, Yinhao & Liu, Feng, 2024. "Assessing the carbon emission reduction effect of flexibility option for integrating variable renewable energy," Energy Economics, Elsevier, vol. 132(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:169:y:2022:i:c:s0301421522004037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.