IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i11p2179-d238054.html
   My bibliography  Save this article

Mixed Integer Linear Programming Model for Peak Operation of Gas-Fired Generating Units with Disjoint-Prohibited Operating Zones

Author

Listed:
  • Zhongkai Feng

    (School of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Wenjing Niu

    (Bureau of Hydrology, ChangJiang Water Resources Commission, Wuhan 430010, China)

  • Sen Wang

    (Key Laboratory of the Pearl River Estuarine Dynamics and Associated Process Regulation, Ministry of Water Resources, Guangzhou 510611, China)

  • Chuntian Cheng

    (Institute of Hydropower and Hydroinformatics, Dalian University of Technology, Dalian 116024, China)

  • Zhenguo Song

    (China Ship Development and Design Center, Wuhan 430064, China)

Abstract

Due to booming economic development over the past decades, energy demands in most of China’s provincial power grids have increased sharply, and it has become challenging to guarantee the energy balance at peak periods. In many provincial electric systems of China, gas-fired generators are one of the most important peaking power sources to respond the load change at peak periods. To meet this practical necessity, a novel mixed integer linear programming model is proposed in this paper for the peak operation of gas-fired generating units with disjoint-prohibited operating zones. In the developed model, the objective function is chosen to minimize the peak-valley difference of the remaining load series that is obtained by subtracting the total generation of all the gas-fired units from the original load curve. The real-world simulations in several cases show that the developed model is able to generate satisfying scheduling results by reasonably allocating the power outputs of all the gas-fired generators in the scheduling horizon. Then, the management implications obtained lie in the fact that it is necessary to increase the share of peak power sources in the mid- to long-term planning of an electrical power system; and in the daily operation of the power grid, greater flexibility should be given to the gas-fired units to reduce peak pressure.

Suggested Citation

  • Zhongkai Feng & Wenjing Niu & Sen Wang & Chuntian Cheng & Zhenguo Song, 2019. "Mixed Integer Linear Programming Model for Peak Operation of Gas-Fired Generating Units with Disjoint-Prohibited Operating Zones," Energies, MDPI, vol. 12(11), pages 1-17, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2179-:d:238054
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/11/2179/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/11/2179/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian, 2018. "Optimization of hydropower reservoirs operation balancing generation benefit and ecological requirement with parallel multi-objective genetic algorithm," Energy, Elsevier, vol. 153(C), pages 706-718.
    2. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian & Liao, Sheng-li, 2017. "Hydropower system operation optimization by discrete differential dynamic programming based on orthogonal experiment design," Energy, Elsevier, vol. 126(C), pages 720-732.
    3. Catalão, J.P.S. & Pousinho, H.M.I. & Mendes, V.M.F., 2011. "Short-term wind power forecasting in Portugal by neural networks and wavelet transform," Renewable Energy, Elsevier, vol. 36(4), pages 1245-1251.
    4. Feng, Zhong-kai & Niu, Wen-jing & Wang, Wen-chuan & Zhou, Jian-zhong & Cheng, Chun-tian, 2019. "A mixed integer linear programming model for unit commitment of thermal plants with peak shaving operation aspect in regional power grid lack of flexible hydropower energy," Energy, Elsevier, vol. 175(C), pages 618-629.
    5. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian & Zhou, Jian-zhong, 2017. "Peak shaving operation of hydro-thermal-nuclear plants serving multiple power grids by linear programming," Energy, Elsevier, vol. 135(C), pages 210-219.
    6. Yu, L. & Li, Y.P. & Huang, G.H., 2016. "A fuzzy-stochastic simulation-optimization model for planning electric power systems with considering peak-electricity demand: A case study of Qingdao, China," Energy, Elsevier, vol. 98(C), pages 190-203.
    7. Esmaeily, Ali & Ahmadi, Abdollah & Raeisi, Fatima & Ahmadi, Mohammad Reza & Esmaeel Nezhad, Ali & Janghorbani, Mohammadreza, 2017. "Evaluating the effectiveness of mixed-integer linear programming for day-ahead hydro-thermal self-scheduling considering price uncertainty and forced outage rate," Energy, Elsevier, vol. 122(C), pages 182-193.
    8. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian, 2017. "Multi-objective quantum-behaved particle swarm optimization for economic environmental hydrothermal energy system scheduling," Energy, Elsevier, vol. 131(C), pages 165-178.
    9. Yilun Shang, 2018. "Resilient Multiscale Coordination Control against Adversarial Nodes," Energies, MDPI, vol. 11(7), pages 1-17, July.
    10. A J Conejo & F J Nogales & M Carrión & J M Morales, 2010. "Electricity pool prices: long-term uncertainty characterization for futures-market trading and risk management," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(2), pages 235-245, February.
    11. Liu, Benxi & Cheng, Chuntian & Wang, Sen & Liao, Shengli & Chau, Kwok-Wing & Wu, Xinyu & Li, Weidong, 2018. "Parallel chance-constrained dynamic programming for cascade hydropower system operation," Energy, Elsevier, vol. 165(PA), pages 752-767.
    12. Wei, Hu & Hongxuan, Zhang & Yu, Dong & Yiting, Wang & Ling, Dong & Ming, Xiao, 2019. "Short-term optimal operation of hydro-wind-solar hybrid system with improved generative adversarial networks," Applied Energy, Elsevier, vol. 250(C), pages 389-403.
    13. Catalão, J.P.S. & Pousinho, H.M.I. & Mendes, V.M.F., 2011. "Hydro energy systems management in Portugal: Profit-based evaluation of a mixed-integer nonlinear approach," Energy, Elsevier, vol. 36(1), pages 500-507.
    14. Li, Y.P. & Huang, G.H. & Chen, X., 2011. "An interval-valued minimax-regret analysis approach for the identification of optimal greenhouse-gas abatement strategies under uncertainty," Energy Policy, Elsevier, vol. 39(7), pages 4313-4324, July.
    15. Ye Liu & Guohe Huang & Yanpeng Cai & Cong Dong, 2011. "An Inexact Mix-Integer Two-Stage Linear Programming Model for Supporting the Management of a Low-Carbon Energy System in China," Energies, MDPI, vol. 4(10), pages 1-30, October.
    16. Razavi, Seyed-Ehsan & Esmaeel Nezhad, Ali & Mavalizadeh, Hani & Raeisi, Fatima & Ahmadi, Abdollah, 2018. "Robust hydrothermal unit commitment: A mixed-integer linear framework," Energy, Elsevier, vol. 165(PB), pages 593-602.
    17. Chen, Fang & Zhou, Jianzhong & Wang, Chao & Li, Chunlong & Lu, Peng, 2017. "A modified gravitational search algorithm based on a non-dominated sorting genetic approach for hydro-thermal-wind economic emission dispatching," Energy, Elsevier, vol. 121(C), pages 276-291.
    18. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian & Wu, Xin-yu, 2017. "Optimization of hydropower system operation by uniform dynamic programming for dimensionality reduction," Energy, Elsevier, vol. 134(C), pages 718-730.
    19. Shen, Jianjian & Cheng, Chuntian & Cheng, Xiong & Lund, Jay R., 2016. "Coordinated operations of large-scale UHVDC hydropower and conventional hydro energies about regional power grid," Energy, Elsevier, vol. 95(C), pages 433-446.
    20. Chen, Diyi & Liu, Si & Ma, Xiaoyi, 2013. "Modeling, nonlinear dynamical analysis of a novel power system with random wind power and it's control," Energy, Elsevier, vol. 53(C), pages 139-146.
    21. You, L. & Li, Y.P. & Huang, G.H. & Zhang, J.L., 2014. "Modeling regional ecosystem development under uncertainty – A case study for New Binhai District of Tianjin," Ecological Modelling, Elsevier, vol. 288(C), pages 127-142.
    22. Bo Ming & Jian-xia Chang & Qiang Huang & Yi-min Wang & Sheng-zhi Huang, 2015. "Optimal Operation of Multi-Reservoir System Based-On Cuckoo Search Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5671-5687, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jovancho Grozdanovski & Rafael Mihalic & Urban Rudez, 2021. "WAMS-Supported Power Mismatch Optimization for Secure Intentional Islanding," Energies, MDPI, vol. 14(10), pages 1-13, May.
    2. Wang, Yuxiao & Cao, Yuting & Guo, Zhenyuan & Huang, Tingwen & Wen, Shiping, 2020. "Event-based sliding-mode synchronization of delayed memristive neural networks via continuous/periodic sampling algorithm," Applied Mathematics and Computation, Elsevier, vol. 383(C).
    3. Shuai Liu & Zhong-Kai Feng & Wen-Jing Niu & Hai-Rong Zhang & Zhen-Guo Song, 2019. "Peak Operation Problem Solving for Hydropower Reservoirs by Elite-Guide Sine Cosine Algorithm with Gaussian Local Search and Random Mutation," Energies, MDPI, vol. 12(11), pages 1-24, June.
    4. Bonan Huang & Chaoming Zheng & Qiuye Sun & Ruixue Hu, 2019. "Optimal Economic Dispatch for Integrated Power and Heating Systems Considering Transmission Losses," Energies, MDPI, vol. 12(13), pages 1-19, June.
    5. Iram Parvez & Jianjian Shen & Ishitaq Hassan & Nannan Zhang, 2021. "Generation of Hydro Energy by Using Data Mining Algorithm for Cascaded Hydropower Plant," Energies, MDPI, vol. 14(2), pages 1-28, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Zhong-kai & Niu, Wen-jing & Wang, Wen-chuan & Zhou, Jian-zhong & Cheng, Chun-tian, 2019. "A mixed integer linear programming model for unit commitment of thermal plants with peak shaving operation aspect in regional power grid lack of flexible hydropower energy," Energy, Elsevier, vol. 175(C), pages 618-629.
    2. Shuai Liu & Zhong-Kai Feng & Wen-Jing Niu & Hai-Rong Zhang & Zhen-Guo Song, 2019. "Peak Operation Problem Solving for Hydropower Reservoirs by Elite-Guide Sine Cosine Algorithm with Gaussian Local Search and Random Mutation," Energies, MDPI, vol. 12(11), pages 1-24, June.
    3. Feng, Zhong-kai & Niu, Wen-jing & Wang, Sen & Cheng, Chun-tian & Jiang, Zhi-qiang & Qin, Hui & Liu, Yi, 2018. "Developing a successive linear programming model for head-sensitive hydropower system operation considering power shortage aspect," Energy, Elsevier, vol. 155(C), pages 252-261.
    4. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian, 2018. "Optimal allocation of hydropower and hybrid electricity injected from inter-regional transmission lines among multiple receiving-end power grids in China," Energy, Elsevier, vol. 162(C), pages 444-452.
    5. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian, 2019. "China’s large-scale hydropower system: operation characteristics, modeling challenge and dimensionality reduction possibilities," Renewable Energy, Elsevier, vol. 136(C), pages 805-818.
    6. Niu, Wen-jing & Feng, Zhong-kai & Cheng, Chun-tian, 2018. "Optimization of variable-head hydropower system operation considering power shortage aspect with quadratic programming and successive approximation," Energy, Elsevier, vol. 143(C), pages 1020-1028.
    7. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian & Zhou, Jian-zhong, 2017. "Peak shaving operation of hydro-thermal-nuclear plants serving multiple power grids by linear programming," Energy, Elsevier, vol. 135(C), pages 210-219.
    8. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Yan, Zhiyu, 2022. "A Wasserstein metric-based distributionally robust optimization approach for reliable-economic equilibrium operation of hydro-wind-solar energy systems," Renewable Energy, Elsevier, vol. 196(C), pages 204-219.
    9. Wang, Jinwen & Chen, Cheng & Liu, Shuangquan, 2018. "A new field-levelling procedure to minimize spillages in hydropower reservoir operation," Energy, Elsevier, vol. 160(C), pages 979-985.
    10. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian, 2018. "Optimization of hydropower reservoirs operation balancing generation benefit and ecological requirement with parallel multi-objective genetic algorithm," Energy, Elsevier, vol. 153(C), pages 706-718.
    11. Xu, Bin & Zhu, Feilin & Zhong, Ping-an & Chen, Juan & Liu, Weifeng & Ma, Yufei & Guo, Le & Deng, Xiaoliang, 2019. "Identifying long-term effects of using hydropower to complement wind power uncertainty through stochastic programming," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    12. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian & Wu, Xin-yu, 2017. "Optimization of hydropower system operation by uniform dynamic programming for dimensionality reduction," Energy, Elsevier, vol. 134(C), pages 718-730.
    13. Ak, Mümtaz & Kentel, Elcin & Savasaneril, Secil, 2019. "Quantifying the revenue gain of operating a cascade hydropower plant system as a pumped-storage hydropower system," Renewable Energy, Elsevier, vol. 139(C), pages 739-752.
    14. Shen, Jianjian & Cheng, Chuntian & Zhang, Xiufei & Zhou, Binbin, 2018. "Coordinated operations of multiple-reservoir cascaded hydropower plants with cooperation benefit allocation," Energy, Elsevier, vol. 153(C), pages 509-518.
    15. Jianjian Shen & Xiufei Zhang & Jian Wang & Rui Cao & Sen Wang & Jun Zhang, 2019. "Optimal Operation of Interprovincial Hydropower System Including Xiluodu and Local Plants in Multiple Recipient Regions," Energies, MDPI, vol. 12(1), pages 1-19, January.
    16. Iram Parvez & Jianjian Shen & Ishitaq Hassan & Nannan Zhang, 2021. "Generation of Hydro Energy by Using Data Mining Algorithm for Cascaded Hydropower Plant," Energies, MDPI, vol. 14(2), pages 1-28, January.
    17. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Li, Gang & Liu, Lingjun, 2022. "Impacts of different wind and solar power penetrations on cascade hydroplants operation," Renewable Energy, Elsevier, vol. 182(C), pages 227-244.
    18. Liao, Shengli & Yang, Hualong & Liu, Benxi & Zhao, Hongye & Liu, Huan & Ma, Xiangyu & Wu, Huijun, 2022. "Daily peak-shaving model of cascade hydropower serving multi-grids considering an HVDC channel shared constraint," Renewable Energy, Elsevier, vol. 199(C), pages 112-122.
    19. El-Sayed, Wael T. & El-Saadany, Ehab F. & Zeineldin, Hatem H. & Al-Sumaiti, Ameena S., 2020. "Fast initialization methods for the nonconvex economic dispatch problem," Energy, Elsevier, vol. 201(C).
    20. Cipek, Mihael & Kasać, Josip & Pavković, Danijel & Zorc, Davor, 2020. "A novel cascade approach to control variables optimisation for advanced series-parallel hybrid electric vehicle power-train," Applied Energy, Elsevier, vol. 276(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:11:p:2179-:d:238054. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.