IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p9252-d995337.html
   My bibliography  Save this article

A Review of Research on Cavity Growth in the Context of Underground Coal Gasification

Author

Listed:
  • Huijun Fang

    (China United Coalbed Methane National Engineering Research Center Co., Ltd., Beijing 100095, China
    PetroChina Coalbed Methane Company Limited, Beijing 100028, China)

  • Yuewu Liu

    (Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
    School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Tengze Ge

    (China United Coalbed Methane National Engineering Research Center Co., Ltd., Beijing 100095, China
    PetroChina Coalbed Methane Company Limited, Beijing 100028, China)

  • Taiyi Zheng

    (Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China)

  • Yueyu Yu

    (China United Coalbed Methane National Engineering Research Center Co., Ltd., Beijing 100095, China
    PetroChina Coalbed Methane Company Limited, Beijing 100028, China)

  • Danlu Liu

    (China United Coalbed Methane National Engineering Research Center Co., Ltd., Beijing 100095, China
    PetroChina Coalbed Methane Company Limited, Beijing 100028, China)

  • Jiuge Ding

    (Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China)

  • Longlong Li

    (Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China)

Abstract

Underground Coal Gasification (UCG) is a leading-edge technology for clean and effective utilization of coal resources, especially for deep coal seams with a depth of more than 1000 m. Since the core operation place of UCG is the cavity, mastering the cavity growth pattern is a prerequisite to ensure the efficient and economic development of UCG. At present, scholars have conducted numerous research works on cavity growth, but the simulation conditions limit the research results. Hence, it is necessary to summarize and sort out the research results of cavity growth patterns, which contribute to deepening the understanding of UCG and pointing out the direction for subsequent research. First of all, this paper summarizes the development history of UCG technology and describes the cavity growth mechanism from chemical reactions and thermo-mechanical failure. Then, the research methods of cavity growth are summarized from three aspects: a field test, laboratory experiment, and numerical simulation. The results show that the appearance of the cavity is teardrop-shaped, and its growth direction is obviously related to the gas injection method, including the injection direction and rate. Subsequently, the factors affecting the cavity growth process are expounded from the geological factors (permeability, moisture content, and coal rank) and operating factors (temperature, pressure, gasification agent’s composition, and gasification agent’s flow pattern). Finally, the existing problems and development trends in the cavity growth are discussed. The follow-up research direction should focus on clarifying the cavity growth mechanism of the controlled-retractable-injection-point (CRIP) method of UCG in the deep coal seam and ascertain the influence of the moisture content in the coal seam on cavity growth.

Suggested Citation

  • Huijun Fang & Yuewu Liu & Tengze Ge & Taiyi Zheng & Yueyu Yu & Danlu Liu & Jiuge Ding & Longlong Li, 2022. "A Review of Research on Cavity Growth in the Context of Underground Coal Gasification," Energies, MDPI, vol. 15(23), pages 1-21, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9252-:d:995337
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/9252/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/9252/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Javed, Syed Bilal & Uppal, Ali Arshad & Bhatti, Aamer Iqbal & Samar, Raza, 2019. "Prediction and parametric analysis of cavity growth for the underground coal gasification project Thar," Energy, Elsevier, vol. 172(C), pages 1277-1290.
    2. Daggupati, Sateesh & Mandapati, Ramesh N. & Mahajani, Sanjay M. & Ganesh, Anuradda & Mathur, D.K. & Sharma, R.K. & Aghalayam, Preeti, 2010. "Laboratory studies on combustion cavity growth in lignite coal blocks in the context of underground coal gasification," Energy, Elsevier, vol. 35(6), pages 2374-2386.
    3. Prabu, V. & Jayanti, S., 2011. "Simulation of cavity formation in underground coal gasification using bore hole combustion experiments," Energy, Elsevier, vol. 36(10), pages 5854-5864.
    4. Daggupati, Sateesh & Mandapati, Ramesh N. & Mahajani, Sanjay M. & Ganesh, Anuradda & Sapru, R.K. & Sharma, R.K. & Aghalayam, Preeti, 2011. "Laboratory studies on cavity growth and product gas composition in the context of underground coal gasification," Energy, Elsevier, vol. 36(3), pages 1776-1784.
    5. Prabu, V. & Jayanti, S., 2012. "Laboratory scale studies on simulated underground coal gasification of high ash coals for carbon-neutral power generation," Energy, Elsevier, vol. 46(1), pages 351-358.
    6. Jowkar, Amin & Sereshki, Farhang & Najafi, Mehdi, 2018. "A new model for evaluation of cavity shape and volume during Underground Coal Gasification process," Energy, Elsevier, vol. 148(C), pages 756-765.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ján Kačur & Marek Laciak & Milan Durdán & Patrik Flegner & Rebecca Frančáková, 2023. "A Review of Research on Advanced Control Methods for Underground Coal Gasification Processes," Energies, MDPI, vol. 16(8), pages 1-36, April.
    2. Ján Kačur & Marek Laciak & Milan Durdán & Patrik Flegner, 2023. "Investigation of Underground Coal Gasification in Laboratory Conditions: A Review of Recent Research," Energies, MDPI, vol. 16(17), pages 1-55, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiaorui & Zhang, Qinghe & Yuan, Liang, 2024. "A coupled thermal-force-chemical-displacement multi-field model for underground coal gasification based on controlled retraction injection point technology and its thermal analysis," Energy, Elsevier, vol. 293(C).
    2. Prabu, V. & Geeta, K., 2015. "CO2 enhanced in-situ oxy-coal gasification based carbon-neutral conventional power generating systems," Energy, Elsevier, vol. 84(C), pages 672-683.
    3. Prabu, V., 2015. "Integration of in-situ CO2-oxy coal gasification with advanced power generating systems performing in a chemical looping approach of clean combustion," Applied Energy, Elsevier, vol. 140(C), pages 1-13.
    4. Su, Fa-qiang & Wu, Jun-bo & Tao-Zhang, & Deng, Qi-chao & Yu, Yi-he & Hamanaka, Akihiro & Dai, Meng-Jia & Yang, Jun-Nan & He, Xiao-long, 2023. "Study on the monitoring method of cavity growth in underground coal gasification under laboratory conditions," Energy, Elsevier, vol. 263(PE).
    5. Javed, Syed Bilal & Uppal, Ali Arshad & Bhatti, Aamer Iqbal & Samar, Raza, 2019. "Prediction and parametric analysis of cavity growth for the underground coal gasification project Thar," Energy, Elsevier, vol. 172(C), pages 1277-1290.
    6. Su, Fa-qiang & Itakura, Ken-ichi & Deguchi, Gota & Ohga, Koutarou, 2017. "Monitoring of coal fracturing in underground coal gasification by acoustic emission techniques," Applied Energy, Elsevier, vol. 189(C), pages 142-156.
    7. Ján Kačur & Marek Laciak & Milan Durdán & Patrik Flegner, 2023. "Investigation of Underground Coal Gasification in Laboratory Conditions: A Review of Recent Research," Energies, MDPI, vol. 16(17), pages 1-55, August.
    8. Xin, Lin & An, Mingyu & Feng, Mingze & Li, Kaixuan & Cheng, Weimin & Liu, Weitao & Hu, Xiangming & Wang, Zhigang & Han, Limin, 2021. "Study on pyrolysis characteristics of lump coal in the context of underground coal gasification," Energy, Elsevier, vol. 237(C).
    9. Yuteng Xiao & Jihang Yin & Yifan Hu & Junzhe Wang & Hongsheng Yin & Honggang Qi, 2019. "Monitoring and Control in Underground Coal Gasification: Current Research Status and Future Perspective," Sustainability, MDPI, vol. 11(1), pages 1-14, January.
    10. Prabu, V. & Jayanti, S., 2012. "Laboratory scale studies on simulated underground coal gasification of high ash coals for carbon-neutral power generation," Energy, Elsevier, vol. 46(1), pages 351-358.
    11. Xi Lin & Qingya Liu & Zhenyu Liu, 2018. "Estimation of Effective Diffusion Coefficient of O 2 in Ash Layer in Underground Coal Gasification by Thermogravimetric Apparatus," Energies, MDPI, vol. 11(2), pages 1-14, February.
    12. Yufeng Zhao & Zhen Dong & Yanpeng Chen & Hao Chen & Shanshan Chen & Mengyuan Zhang & Junjie Xue & Xinggang Wang & Lixin Jiao, 2023. "Physical Simulation Test of Underground Coal Gasification Cavity Evolution in the Horizontal Segment of U-Shaped Well," Energies, MDPI, vol. 16(8), pages 1-15, April.
    13. Su, Fa-qiang & He, Xiao-long & Dai, Meng-jia & Yang, Jun-nan & Hamanaka, Akihiro & Yu, Yi-he & Li, Wen & Li, Jiao-yuan, 2023. "Estimation of the cavity volume in the gasification zone for underground coal gasification under different oxygen flow conditions," Energy, Elsevier, vol. 285(C).
    14. Zhen Dong & Haiyang Yi & Yufeng Zhao & Xinggang Wang & Tingxiang Chu & Junjie Xue & Hanqi Wu & Shanshan Chen & Mengyuan Zhang & Hao Chen, 2022. "Investigation of the Evolution of Stratum Fracture during the Cavity Expansion of Underground Coal Gasification," Energies, MDPI, vol. 15(19), pages 1-15, October.
    15. Javed, Syed Bilal & Uppal, Ali Arshad & Samar, Raza & Bhatti, Aamer Iqbal, 2021. "Design and implementation of multi-variable H∞ robust control for the underground coal gasification project Thar," Energy, Elsevier, vol. 216(C).
    16. Md M. Khan & Joseph P. Mmbaga & Ahad S. Shirazi & Japan Trivedi & Qingzia Liu & Rajender Gupta, 2015. "Modelling Underground Coal Gasification—A Review," Energies, MDPI, vol. 8(11), pages 1-66, November.
    17. Jowkar, Amin & Sereshki, Farhang & Najafi, Mehdi, 2018. "A new model for evaluation of cavity shape and volume during Underground Coal Gasification process," Energy, Elsevier, vol. 148(C), pages 756-765.
    18. Prabu, V. & Jayanti, S., 2012. "Underground coal-air gasification based solid oxide fuel cell system," Applied Energy, Elsevier, vol. 94(C), pages 406-414.
    19. Cui, Yong & Liang, Jie & Wang, Zhangqing & Zhang, Xiaochun & Fan, Chenzi & Liang, Dongyu & Wang, Xuan, 2014. "Forward and reverse combustion gasification of coal with production of high-quality syngas in a simulated pilot system for in situ gasification," Applied Energy, Elsevier, vol. 131(C), pages 9-19.
    20. Prabu, V. & Mallick, Nirmal, 2015. "Coalbed methane with CO2 sequestration: An emerging clean coal technology in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 229-244.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9252-:d:995337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.