IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v292y2024ics0360544224002925.html
   My bibliography  Save this article

Modal decomposition integrated model for ultra-supercritical coal-fired power plant reheater tube temperature multi-step prediction

Author

Listed:
  • Yin, Linfei
  • Zhou, Hang

Abstract

Overheating of reheater tubes in ultra-supercritical coal-fired power plants can affect the efficiency and safety of power generation (PG). To avoid reheater tubes overheating and bursting, this study proposes a modal decomposition integrated model (MDIM) for multi-step prediction of the reheater tube temperature to help managers adopt appropriate measures based on the predicted temperature changes. Considering the non-smooth and non-linear nature of the original temperature data, this study applies complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) to decompose the temperature data to remove noise and extract non-linear features effectively. In this study, the residual network18-convolutional block attention module (ResNet18-CBAM), transformer, gate recurrent unit (GRU), and temporal convolutional network (TCN) are applied to predict each component with different degrees of complexity after decomposition. The results of each component are integrated by the multilayer perceptron (MLP). The proposed MDIM is evaluated with various metrics. For single-step prediction, mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean square error (RMSE) are 0.037, 0.0062, and 0.066, respectively. In the case of 48-step prediction, the corresponding values are 1.97, 0.33, and 2.4. Therefore, the proposed MDIM achieves outstanding results in both single-step and multi-step prediction.

Suggested Citation

  • Yin, Linfei & Zhou, Hang, 2024. "Modal decomposition integrated model for ultra-supercritical coal-fired power plant reheater tube temperature multi-step prediction," Energy, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224002925
    DOI: 10.1016/j.energy.2024.130521
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224002925
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130521?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yihan & Wen, Zongguo & Lv, Xiaojun & Zhu, Junming, 2023. "The regional discrepancies in the contribution of China’s thermal power plants toward the carbon peaking target," Applied Energy, Elsevier, vol. 337(C).
    2. Zhang, Weiyi & Zhou, Haiyang & Bao, Xiaohua & Cui, Hongzhi, 2023. "Outlet water temperature prediction of energy pile based on spatial-temporal feature extraction through CNN–LSTM hybrid model," Energy, Elsevier, vol. 264(C).
    3. Wang, Ziyang & Matsuhashi, Ryuji & Onodera, Hiroshi, 2023. "Intrusive and non-intrusive early warning systems for thermal discomfort by analysis of body surface temperature," Applied Energy, Elsevier, vol. 329(C).
    4. Chen, Qin & Zhang, Guobin & Zhang, Xuzhong & Sun, Cheng & Jiao, Kui & Wang, Yun, 2021. "Thermal management of polymer electrolyte membrane fuel cells: A review of cooling methods, material properties, and durability," Applied Energy, Elsevier, vol. 286(C).
    5. Hou, Guolian & Huang, Ting & Huang, Congzhi, 2023. "Flexibility improvement of 1000 MW ultra-supercritical unit under full operating conditions by error-based ADRC and fast pigeon-inspired optimizer," Energy, Elsevier, vol. 270(C).
    6. Taler, Jan & Trojan, Marcin & Dzierwa, Piotr & Kaczmarski, Karol & Węglowski, Bohdan & Taler, Dawid & Zima, Wiesław & Grądziel, Sławomir & Ocłoń, Paweł & Sobota, Tomasz & Rerak, Monika & Jaremkiewicz,, 2023. "The flexible boiler operation in a wide range of load changes with considering the strength and environmental restrictions," Energy, Elsevier, vol. 263(PB).
    7. Zhong, Yu-Xiu & Wang, Xin & Xu, Gang & Ning, Xinyu & Zhou, Lin & Tang, Wen & Wang, Ming-Hao & Wang, Tong & Xu, Jun & Jiang, Long & Wang, Yi & Su, Sheng & Hu, Song & Xiang, Jun, 2023. "Investigation on slagging and high-temperature corrosion prevention and control of a 1000 MW ultra supercritical double tangentially fired boiler," Energy, Elsevier, vol. 275(C).
    8. Su, Hui & Zhou, Na & Wu, Qiaosheng & Bi, Zhiwei & Wang, Yuli, 2023. "Investigating price fluctuations in copper futures: Based on EEMD and Markov-switching VAR model," Resources Policy, Elsevier, vol. 82(C).
    9. Kang, Panxing & Zhang, Guangyi & Ge, Zefeng & Zha, Zhenting & Zhang, Huiyan, 2022. "Three-dimensional modelling and optimization of an industrial dual fluidized bed biomass gasification decoupling combustion reactor," Applied Energy, Elsevier, vol. 311(C).
    10. Yang, Dongchuan & Guo, Ju-e & Li, Yanzhao & Sun, Shaolong & Wang, Shouyang, 2023. "Short-term load forecasting with an improved dynamic decomposition-reconstruction-ensemble approach," Energy, Elsevier, vol. 263(PA).
    11. Fu, Wenlong & Zhang, Kai & Wang, Kai & Wen, Bin & Fang, Ping & Zou, Feng, 2021. "A hybrid approach for multi-step wind speed forecasting based on two-layer decomposition, improved hybrid DE-HHO optimization and KELM," Renewable Energy, Elsevier, vol. 164(C), pages 211-229.
    12. Zhang, Lifang & Wang, Jianzhou & Niu, Xinsong & Liu, Zhenkun, 2021. "Ensemble wind speed forecasting with multi-objective Archimedes optimization algorithm and sub-model selection," Applied Energy, Elsevier, vol. 301(C).
    13. Opriș, Ioana & Cenușă, Victor-Eduard, 2023. "Parametric and heuristic optimization of multiple schemes with double-reheat ultra-supercritical steam power plants," Energy, Elsevier, vol. 266(C).
    14. Boza, Pal & Evgeniou, Theodoros, 2021. "Artificial intelligence to support the integration of variable renewable energy sources to the power system," Applied Energy, Elsevier, vol. 290(C).
    15. Lv, Zhihan & Wang, Nana & Lou, Ranran & Tian, Yajun & Guizani, Mohsen, 2023. "Towards carbon Neutrality: Prediction of wave energy based on improved GRU in Maritime transportation," Applied Energy, Elsevier, vol. 331(C).
    16. Li, Changzhi & Lin, Wei & Wu, Hangyu & Li, Yang & Zhu, Wenchao & Xie, Changjun & Gooi, Hoay Beng & Zhao, Bo & Zhang, Leiqi, 2023. "Performance degradation decomposition-ensemble prediction of PEMFC using CEEMDAN and dual data-driven model," Renewable Energy, Elsevier, vol. 215(C).
    17. Carneiro, Tatiane C. & Rocha, Paulo A.C. & Carvalho, Paulo C.M. & Fernández-Ramírez, Luis M., 2022. "Ridge regression ensemble of machine learning models applied to solar and wind forecasting in Brazil and Spain," Applied Energy, Elsevier, vol. 314(C).
    18. Jin, Donghao & Yan, Jingwen & Liu, Xin & Zhang, Chaoqun & Wang, Heyang, 2023. "Prediction of tube temperature distribution of boiler platen superheater by a coupled combustion and hydrodynamic model," Energy, Elsevier, vol. 279(C).
    19. Zhang, Yituo & Li, Chaolin & Jiang, Yiqi & Zhao, Ruobin & Yan, Kefen & Wang, Wenhui, 2023. "A hybrid model combining mode decomposition and deep learning algorithms for detecting TP in urban sewer networks," Applied Energy, Elsevier, vol. 333(C).
    20. Xiao, Tong & Xu, Peng & He, Ruikai & Sha, Huajing, 2022. "Status quo and opportunities for building energy prediction in limited data Context—Overview from a competition," Applied Energy, Elsevier, vol. 305(C).
    21. Yuhui Wu & Xinzhi Zhou & Li Zhao & Chenlong Dong & Hailin Wang, 2021. "A Method for Reconstruction of Boiler Combustion Temperature Field Based on Acoustic Tomography," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-11, September.
    22. Wang, Yun & Xu, Houhua & Song, Mengmeng & Zhang, Fan & Li, Yifen & Zhou, Shengchao & Zhang, Lingjun, 2023. "A convolutional Transformer-based truncated Gaussian density network with data denoising for wind speed forecasting," Applied Energy, Elsevier, vol. 333(C).
    23. Fan, He & Su, Zhi-gang & Wang, Pei-hong & Lee, Kwang Y., 2021. "A dynamic nonlinear model for a wide-load range operation of ultra-supercritical once-through boiler-turbine units," Energy, Elsevier, vol. 226(C).
    24. Huang, Congzhi & Li, Zhuoyong, 2023. "Data-driven modeling of ultra-supercritical unit coordinated control system by improved transformer network," Energy, Elsevier, vol. 266(C).
    25. Liu, Jingxuan & Zang, Haixiang & Cheng, Lilin & Ding, Tao & Wei, Zhinong & Sun, Guoqiang, 2023. "A Transformer-based multimodal-learning framework using sky images for ultra-short-term solar irradiance forecasting," Applied Energy, Elsevier, vol. 342(C).
    26. Zhou, Feite & Huang, Zhehao & Zhang, Changhong, 2022. "Carbon price forecasting based on CEEMDAN and LSTM," Applied Energy, Elsevier, vol. 311(C).
    27. Shahid, Farah & Zameer, Aneela & Muneeb, Muhammad, 2021. "A novel genetic LSTM model for wind power forecast," Energy, Elsevier, vol. 223(C).
    28. Cui, Zhipeng & Xu, Jing & Liu, Wenhao & Zhao, Guanjia & Ma, Suxia, 2023. "Data-driven modeling-based digital twin of supercritical coal-fired boiler for metal temperature anomaly detection," Energy, Elsevier, vol. 278(PA).
    29. Zima, Wiesław & Taler, Jan & Grądziel, Sławomir & Trojan, Marcin & Cebula, Artur & Ocłoń, Paweł & Dzierwa, Piotr & Taler, Dawid & Rerak, Monika & Majdak, Marek & Korzeń, Anna & Skrzyniowska, Dorota, 2022. "Thermal calculations of a natural circulation power boiler operating under a wide range of loads," Energy, Elsevier, vol. 261(PB).
    30. Weng, Zebin & Liu, Furong & Zhu, Wenchao & Li, Yang & Xie, Changjun & Deng, Jian & Huang, Liang, 2022. "Performance improvement of variable-angle annular thermoelectric generators considering different boundary conditions," Applied Energy, Elsevier, vol. 306(PA).
    31. Yin, Linfei & Xie, Jiaxing, 2022. "Multi-feature-scale fusion temporal convolution networks for metal temperature forecasting of ultra-supercritical coal-fired power plant reheater tubes," Energy, Elsevier, vol. 238(PA).
    32. Cheng, Wei & Wang, Yan & Peng, Zheng & Ren, Xiaodong & Shuai, Yubei & Zang, Shengyin & Liu, Hao & Cheng, Hao & Wu, Jiagui, 2021. "High-efficiency chaotic time series prediction based on time convolution neural network," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    33. Hafeez, Ghulam & Khan, Imran & Jan, Sadaqat & Shah, Ibrar Ali & Khan, Farrukh Aslam & Derhab, Abdelouahid, 2021. "A novel hybrid load forecasting framework with intelligent feature engineering and optimization algorithm in smart grid," Applied Energy, Elsevier, vol. 299(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zhimin & Huang, Qian & Liu, Guanqing & Wang, Kexuan & Lyu, Junfu & Li, Shuiqing, 2024. "Knowledge-inspired data-driven prediction of overheating risks in flexible thermal-power plants," Applied Energy, Elsevier, vol. 364(C).
    2. Du, Pei & Yang, Dongchuan & Li, Yanzhao & Wang, Jianzhou, 2024. "An innovative interpretable combined learning model for wind speed forecasting," Applied Energy, Elsevier, vol. 358(C).
    3. Zhang, Guowei & Zhang, Yi & Wang, Hui & Liu, Da & Cheng, Runkun & Yang, Di, 2024. "Short-term wind speed forecasting based on adaptive secondary decomposition and robust temporal convolutional network," Energy, Elsevier, vol. 288(C).
    4. Wang, Xiaodi & Hao, Yan & Yang, Wendong, 2024. "Novel wind power ensemble forecasting system based on mixed-frequency modeling and interpretable base model selection strategy," Energy, Elsevier, vol. 297(C).
    5. Hou, Guolian & Huang, Ting & Zheng, Fumeng & Huang, Congzhi, 2024. "A hierarchical reinforcement learning GPC for flexible operation of ultra-supercritical unit considering economy," Energy, Elsevier, vol. 289(C).
    6. Wu, Binrong & Yu, Sihao & Peng, Lu & Wang, Lin, 2024. "Interpretable wind speed forecasting with meteorological feature exploring and two-stage decomposition," Energy, Elsevier, vol. 294(C).
    7. Lin, Shengmao & Wang, Shu & Xu, Xuefang & Li, Ruixiong & Shi, Peiming, 2024. "GAOformer: An adaptive spatiotemporal feature fusion transformer utilizing GAT and optimizable graph matrixes for offshore wind speed prediction," Energy, Elsevier, vol. 292(C).
    8. Cui, Zhipeng & Xu, Jing & Liu, Wenhao & Zhao, Guanjia & Ma, Suxia, 2023. "Data-driven modeling-based digital twin of supercritical coal-fired boiler for metal temperature anomaly detection," Energy, Elsevier, vol. 278(PA).
    9. Yin, Linfei & Cao, Xinghui & Liu, Dongduan, 2023. "Weighted fully-connected regression networks for one-day-ahead hourly photovoltaic power forecasting," Applied Energy, Elsevier, vol. 332(C).
    10. Woon, Kok Sin & Phuang, Zhen Xin & Taler, Jan & Varbanov, Petar Sabev & Chong, Cheng Tung & Klemeš, Jiří Jaromír & Lee, Chew Tin, 2023. "Recent advances in urban green energy development towards carbon emissions neutrality," Energy, Elsevier, vol. 267(C).
    11. Liu, Jiarui & Fu, Yuchen, 2023. "Renewable energy forecasting: A self-supervised learning-based transformer variant," Energy, Elsevier, vol. 284(C).
    12. Wu, Binrong & Wang, Lin, 2024. "Two-stage decomposition and temporal fusion transformers for interpretable wind speed forecasting," Energy, Elsevier, vol. 288(C).
    13. Gao, Huanxiang & Hu, Gang & Zhang, Dongqin & Jiang, Wenjun & Ren, Hehe & Chen, Wenli, 2024. "Prediction of wind fields in mountains at multiple elevations using deep learning models," Applied Energy, Elsevier, vol. 353(PA).
    14. Tian, Zhirui & Liu, Weican & Jiang, Wenqian & Wu, Chenye, 2024. "CNNs-Transformer based day-ahead probabilistic load forecasting for weekends with limited data availability," Energy, Elsevier, vol. 293(C).
    15. Zhang, Dongdong & Chen, Baian & Zhu, Hongyu & Goh, Hui Hwang & Dong, Yunxuan & Wu, Thomas, 2023. "Short-term wind power prediction based on two-layer decomposition and BiTCN-BiLSTM-attention model," Energy, Elsevier, vol. 285(C).
    16. Wang, Chao & Lin, Hong & Hu, Heng & Yang, Ming & Ma, Li, 2024. "A hybrid model with combined feature selection based on optimized VMD and improved multi-objective coati optimization algorithm for short-term wind power prediction," Energy, Elsevier, vol. 293(C).
    17. Xilong Lin & Yisen Niu & Zixuan Yan & Lianglin Zou & Ping Tang & Jifeng Song, 2024. "Hybrid Photovoltaic Output Forecasting Model with Temporal Convolutional Network Using Maximal Information Coefficient and White Shark Optimizer," Sustainability, MDPI, vol. 16(14), pages 1-20, July.
    18. Jiaan Zhang & Chenyu Liu & Leijiao Ge, 2022. "Short-Term Load Forecasting Model of Electric Vehicle Charging Load Based on MCCNN-TCN," Energies, MDPI, vol. 15(7), pages 1-25, April.
    19. Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
    20. Elianne Mora & Jenny Cifuentes & Geovanny Marulanda, 2021. "Short-Term Forecasting of Wind Energy: A Comparison of Deep Learning Frameworks," Energies, MDPI, vol. 14(23), pages 1-26, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224002925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.