IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v82y2023ics030142072300226x.html
   My bibliography  Save this article

Investigating price fluctuations in copper futures: Based on EEMD and Markov-switching VAR model

Author

Listed:
  • Su, Hui
  • Zhou, Na
  • Wu, Qiaosheng
  • Bi, Zhiwei
  • Wang, Yuli

Abstract

Predictable global copper prices are crucial to the transition to a green economy. This paper examines the nonlinear characteristics between the international copper futures prices and their drivers, using combined Empirical Mode Decomposition (EEMD) and the Markov-switching VAR (MSVAR) models. We decompose the monthly international copper futures prices from January 2015 to October 2021 into its low-frequency and high-frequency components by using the EEMD method. In the next step, we employ the MSVAR to examine the nonlinear fluctuation of the international copper futures prices under different regimes. The results indicate that fluctuations of the international copper futures prices exhibit a dynamic regime switching patterns that is characterized as “expansion”, “plateau” and “contraction”. The long-term stability of the international copper futures prices is determined by factors associated with demand, especially demand for strategic metals. Both the London Metal Exchange (LME) copper stocks and the LME copper stock futures have a significant impact on the international copper futures prices in each regime. In several regimes, the global refined copper consumption has no significant effect on the international copper futures prices. The increase in copper turnover is the primary driver of the international copper futures prices during the contraction regime. Regarding the supply factor, an increase in global refined copper capacity would result in a rise in the international copper futures prices during the expansion regime. While a slump would occur during a plateau or contraction regime. The financial factor, reflected by non-commercial traders affects the international copper futures prices volatility differently under different regimes. The increase in speculation reduces the market volatility during regimes of expansion and contraction. In contrast, in plateau regime, speculation increases market volatility and activates the market. The broad dollar index has little impact on the international copper futures prices during each regime. The above conclusions indicate that we should focus on the fluctuations in the international copper futures prices that are caused by the demand for strategic metals and financial factors.

Suggested Citation

  • Su, Hui & Zhou, Na & Wu, Qiaosheng & Bi, Zhiwei & Wang, Yuli, 2023. "Investigating price fluctuations in copper futures: Based on EEMD and Markov-switching VAR model," Resources Policy, Elsevier, vol. 82(C).
  • Handle: RePEc:eee:jrpoli:v:82:y:2023:i:c:s030142072300226x
    DOI: 10.1016/j.resourpol.2023.103518
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142072300226X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2023.103518?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin Liu & Heinz Schandl & James West & Meng Jiang & Zijian Ren & Dingjiang Chen & Bing Zhu, 2022. "Copper ore material footprints and transfers embodied in domestic and international trade of provinces in China," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1423-1436, August.
    2. Fan, Ying & Xu, Jin-Hua, 2011. "What has driven oil prices since 2000? A structural change perspective," Energy Economics, Elsevier, vol. 33(6), pages 1082-1094.
    3. Junior, Peterson Owusu & Tiwari, Aviral Kumar & Padhan, Hemachandra & Alagidede, Imhotep, 2020. "Analysis of EEMD-based quantile-in-quantile approach on spot- futures prices of energy and precious metals in India," Resources Policy, Elsevier, vol. 68(C).
    4. Sanders, Dwight R. & Boris, Keith & Manfredo, Mark, 2004. "Hedgers, funds, and small speculators in the energy futures markets: an analysis of the CFTC's Commitments of Traders reports," Energy Economics, Elsevier, vol. 26(3), pages 425-445, May.
    5. Mehmet Balcilar & Reneé van Eyden & Josine Uwilingiye & Rangan Gupta, 2017. "The Impact of Oil Price on South African GDP Growth: A Bayesian Markov Switching-VAR Analysis," African Development Review, African Development Bank, vol. 29(2), pages 319-336, June.
    6. Brian J. Henderson & Neil D. Pearson & Li Wang, 2015. "Editor's Choice New Evidence on the Financialization of Commodity Markets," The Review of Financial Studies, Society for Financial Studies, vol. 28(5), pages 1285-1311.
    7. Anoop S Kumar & Taufeeq Ajaz, 2019. "Co-movement in crypto-currency markets: evidences from wavelet analysis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-17, December.
    8. Chen, Jinyu & Zhu, Xuehong & Zhong, Meirui, 2019. "Nonlinear effects of financial factors on fluctuations in nonferrous metals prices: A Markov-switching VAR analysis," Resources Policy, Elsevier, vol. 61(C), pages 489-500.
    9. Bangzhu Zhu & Ping Wang & Julien Chevallier & Yi‐Ming Wei & Rui Xie, 2018. "Enriching the VaR framework to EEMD with an application to the European carbon market," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 23(3), pages 315-328, July.
    10. Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2008. "Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm," Energy Economics, Elsevier, vol. 30(5), pages 2623-2635, September.
    11. Mao, Xuegeng & Yang, Albert C. & Peng, Chung-Kang & Shang, Pengjian, 2020. "Analysis of economic growth fluctuations based on EEMD and causal decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    12. Sun, Xiaolei & Yao, Xiaoyang & Wang, Jun, 2017. "Dynamic interaction between economic policy uncertainty and financial stress: A multi-scale correlation framework," Finance Research Letters, Elsevier, vol. 21(C), pages 214-221.
    13. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    14. Ratti, Ronald A. & Vespignani, Joaquin L., 2013. "Liquidity and crude oil prices: China's influence over 1996–2011," Economic Modelling, Elsevier, vol. 33(C), pages 517-525.
    15. Ronald H. Lange, 2016. "The Monetary Transmission Mechanism and Inflation Targeting: A Regime-Switching VAR Approach for Canada," Applied Economics and Finance, Redfame publishing, vol. 3(2), pages 263-279, May.
    16. Labys, W. C. & Achouch, A. & Terraza, M., 1999. "Metal prices and the business cycle," Resources Policy, Elsevier, vol. 25(4), pages 229-238, December.
    17. Yu, Hui & Ding, Yinghui & Sun, Qingru & Gao, Xiangyun & Jia, Xiaoliang & Wang, Xinya & Guo, Sui, 2021. "Multi-scale comovement of the dynamic correlations between copper futures and spot prices," Resources Policy, Elsevier, vol. 70(C).
    18. Sun, Xiaolei & Chen, Xiuwen & Wang, Jun & Li, Jianping, 2020. "Multi-scale interactions between economic policy uncertainty and oil prices in time-frequency domains," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    19. Alex F. McCalla, 2009. "World Food Prices: Causes and Consequences," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 57(1), pages 23-34, March.
    20. Apergis, Nicholas & Chatziantoniou, Ioannis & Cooray, Arusha, 2020. "Monetary policy and commodity markets: Unconventional versus conventional impact and the role of economic uncertainty," International Review of Financial Analysis, Elsevier, vol. 71(C).
    21. Xu, Jia & Tan, Xiujie & He, Gang & Liu, Yu, 2019. "Disentangling the drivers of carbon prices in China's ETS pilots — An EEMD approach," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 1-9.
    22. Ratti, Ronald A. & Vespignani, Joaquin L., 2012. "Liquidity and Crude Oil Prices: China’s Influence Over 1996-2011," MPRA Paper 48900, University Library of Munich, Germany.
    23. Ayben Koy, 2017. "Modelling Nonlinear Dynamics of Oil Futures Market," Econometric Research in Finance, SGH Warsaw School of Economics, Collegium of Economic Analysis, vol. 2(1), pages 23-42, June.
    24. Ji, Qiang & Geng, Jiang-Bo & Tiwari, Aviral Kumar, 2018. "Information spillovers and connectedness networks in the oil and gas markets," Energy Economics, Elsevier, vol. 75(C), pages 71-84.
    25. Shao, Liuguo & Hu, Wenqin & Yang, Danhui, 2020. "The price relationship between main-byproduct metals from a multiscale nonlinear Granger causality perspective," Resources Policy, Elsevier, vol. 69(C).
    26. Michael Pedersen, 2019. "The impact of commodity price shocks in a copper-rich economy: the case of Chile," Empirical Economics, Springer, vol. 57(4), pages 1291-1318, October.
    27. Geng, Jiang-Bo & Ji, Qiang & Fan, Ying, 2017. "The relationship between regional natural gas markets and crude oil markets from a multi-scale nonlinear Granger causality perspective," Energy Economics, Elsevier, vol. 67(C), pages 98-110.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Linfei & Zhou, Hang, 2024. "Modal decomposition integrated model for ultra-supercritical coal-fired power plant reheater tube temperature multi-step prediction," Energy, Elsevier, vol. 292(C).
    2. Rao, Amar & Dev, Dhairya & Kharbanda, Aeshna & Parihar, Jaya Singh & Sala, Dariusz, 2024. "Mineral policy and sustainable development goals: Volatility forecasting in the Global South's minerals market," Resources Policy, Elsevier, vol. 98(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Chang & Sun, Xiaolei & Wang, Jun & Li, Jianping & Chen, Jianming, 2021. "Multiscale information transmission between commodity markets: An EMD-Based transfer entropy network," Research in International Business and Finance, Elsevier, vol. 55(C).
    2. Chen, Jinyu & Zhu, Xuehong & Zhong, Meirui, 2019. "Nonlinear effects of financial factors on fluctuations in nonferrous metals prices: A Markov-switching VAR analysis," Resources Policy, Elsevier, vol. 61(C), pages 489-500.
    3. Jin‐Yu Chen & Xue‐Hong Zhu & Mei‐Rui Zhong, 2021. "Time‐varying effects and structural change of oil price shocks on industrial output: Evidence from China's oil industrial chain," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 3460-3472, July.
    4. Cuilin Li & Ya-Juan Du & Qiang Ji & Jiang-bo Geng, 2019. "Multiscale Market Integration and Nonlinear Granger Causality between Natural Gas Futures and Physical Markets," Sustainability, MDPI, vol. 11(19), pages 1-23, October.
    5. Wang, Yilei & Cheng, Sheng & Cao, Yan, 2022. "How does economic policy uncertainty respond to the global oil price fluctuations? Evidence from BRICS countries," Resources Policy, Elsevier, vol. 79(C).
    6. Zhou, Ying-Zhe & Huang, Jian-Bai & Chen, Jin-Yu, 2019. "Time-varying effect of the financialization of nonferrous metals markets on China's industrial sector," Resources Policy, Elsevier, vol. 64(C).
    7. Ratti, Ronald A. & Vespignani, Joaquin L., 2013. "Crude oil prices and liquidity, the BRIC and G3 countries," Energy Economics, Elsevier, vol. 39(C), pages 28-38.
    8. Kang, Wensheng & Ratti, Ronald A. & Vespignani, Joaquin L., 2016. "Chinese liquidity increases and the U.S. economy," Economic Modelling, Elsevier, vol. 52(PB), pages 764-771.
    9. Shen, Yiran & Liu, Chang & Sun, Xiaolei & Guo, Kun, 2023. "Investor sentiment and the Chinese new energy stock market: A risk–return perspective," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 395-408.
    10. Liu, Yue & Sun, Huaping & Zhang, Jijian & Taghizadeh-Hesary, Farhad, 2020. "Detection of volatility regime-switching for crude oil price modeling and forecasting," Resources Policy, Elsevier, vol. 69(C).
    11. Sabri Boubaker & Zhenya Liu & Yaosong Zhan, 2022. "Risk management for crude oil futures: an optimal stopping-timing approach," Annals of Operations Research, Springer, vol. 313(1), pages 9-27, June.
    12. Vespignani, Joaquin L. & Ratti, Ronald A., 2016. "Not all international monetary shocks are alike for the Japanese economy," Economic Modelling, Elsevier, vol. 52(PB), pages 822-837.
    13. Li, Sisi & Khan, Sufyan Ullah & Yao, Yao & Chen, George S. & Zhang, Lin & Salim, Ruhul & Huo, Jiaying, 2022. "Estimating the long-run crude oil demand function of China: Some new evidence and policy options," Energy Policy, Elsevier, vol. 170(C).
    14. Sun, Yuying & Han, Ai & Hong, Yongmiao & Wang, Shouyang, 2018. "Threshold autoregressive models for interval-valued time series data," Journal of Econometrics, Elsevier, vol. 206(2), pages 414-446.
    15. Alain Hecq & Elisa Voisin, 2023. "Predicting Crashes in Oil Prices During The Covid-19 Pandemic with Mixed Causal-Noncausal Models," Advances in Econometrics, in: Essays in Honor of Joon Y. Park: Econometric Methodology in Empirical Applications, volume 45, pages 209-233, Emerald Group Publishing Limited.
    16. Vamsidhar Ambatipudi & Dilip Kumar, 2022. "Economic Policy Uncertainty Versus Sector Volatility: Evidence from India Using Multi-scale Wavelet Granger Causality Analysis," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 21(2), pages 184-210, June.
    17. Vespignani, Joaquin L. & Ratti, Ronald A., 2013. "Chinese Monetary Expansion and the US Economy," Working Papers 16874, University of Tasmania, Tasmanian School of Business and Economics, revised 05 Aug 2013.
    18. Salim, Ruhul & Yao, Yao & Chen, George S., 2017. "Does human capital matter for energy consumption in China?," Energy Economics, Elsevier, vol. 67(C), pages 49-59.
    19. Liu, Min & Lee, Chien-Chiang, 2021. "Capturing the dynamics of the China crude oil futures: Markov switching, co-movement, and volatility forecasting," Energy Economics, Elsevier, vol. 103(C).
    20. Ratti, Ronald A. & Vespignani, Joaquin L., 2015. "OPEC and non-OPEC oil production and the global economy," Energy Economics, Elsevier, vol. 50(C), pages 364-378.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:82:y:2023:i:c:s030142072300226x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.