IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v329y2023ics0306261922015409.html
   My bibliography  Save this article

Intrusive and non-intrusive early warning systems for thermal discomfort by analysis of body surface temperature

Author

Listed:
  • Wang, Ziyang
  • Matsuhashi, Ryuji
  • Onodera, Hiroshi

Abstract

Buildings consume huge amounts of energy for the thermal comfort maintenance of the occupants. Real-time thermal comfort assessment is both important in the occupants’ thermal comfort optimization and energy conservation in the building sector. Existing thermal comfort studies mainly focus on the real-time assessment of the occupant’s current thermal comfort. Nonetheless, in the transient thermal environment, the occupant’s current thermal comfort is not steady and changes moment by moment. Hence, a prediction error will be elicited if we merely assess the occupant’s current thermal comfort. To address this problem, it is crucial to comprehend the occupant’s real-time thermal sensation trend in the transient thermal environment. A novel thermal sensation index that directly accounts for an occupant’s current thermal sensation trend is investigated in this study. By integrating the novel thermal sensation index into an ordinary thermal comfort model, a novel composite thermal comfort model is derived, which can simultaneously address the occupant’s current thermal comfort and current thermal sensation trend. Next, by utilizing machine learning classifications, we propose the intrusive and non-intrusive assessment methods of the composite thermal comfort model by analysis of the skin/clothing temperatures of ten local body parts measured by thermocouple thermometers and upper body thermal images measured by a low-cost portable infrared camera. The intrusive method reached a mean accuracy of 59.7% and 52.0% in Scenarios I and II, respectively; the non-intrusive method reached a mean accuracy of 45.3% and 42.7% in Scenarios I and II, respectively. The composite thermal comfort model provides a thermal discomfort early warning mechanism and contributes to energy conservation in the building sector.

Suggested Citation

  • Wang, Ziyang & Matsuhashi, Ryuji & Onodera, Hiroshi, 2023. "Intrusive and non-intrusive early warning systems for thermal discomfort by analysis of body surface temperature," Applied Energy, Elsevier, vol. 329(C).
  • Handle: RePEc:eee:appene:v:329:y:2023:i:c:s0306261922015409
    DOI: 10.1016/j.apenergy.2022.120283
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922015409
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120283?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Uğursal, Ahmet & Culp, Charles H., 2013. "The effect of temperature, metabolic rate and dynamic localized airflow on thermal comfort," Applied Energy, Elsevier, vol. 111(C), pages 64-73.
    2. Ghahramani, Ali & Castro, Guillermo & Karvigh, Simin Ahmadi & Becerik-Gerber, Burcin, 2018. "Towards unsupervised learning of thermal comfort using infrared thermography," Applied Energy, Elsevier, vol. 211(C), pages 41-49.
    3. Yang, Shiyu & Wan, Man Pun & Chen, Wanyu & Ng, Bing Feng & Dubey, Swapnil, 2020. "Model predictive control with adaptive machine-learning-based model for building energy efficiency and comfort optimization," Applied Energy, Elsevier, vol. 271(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Linfei & Zhou, Hang, 2024. "Modal decomposition integrated model for ultra-supercritical coal-fired power plant reheater tube temperature multi-step prediction," Energy, Elsevier, vol. 292(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Darowicki, K. & Janicka, E. & Mielniczek, M. & Zielinski, A. & Gawel, L. & Mitzel, J. & Hunger, J., 2019. "The influence of dynamic load changes on temporary impedance in hydrogen fuel cells, selection and validation of the electrical equivalent circuit," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Liu, Xiaoqi & Lee, Seungjae & Bilionis, Ilias & Karava, Panagiota & Joe, Jaewan & Sadeghi, Seyed Amir, 2021. "A user-interactive system for smart thermal environment control in office buildings," Applied Energy, Elsevier, vol. 298(C).
    3. Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
    4. Sun, Hongchang & Niu, Yanlei & Li, Chengdong & Zhou, Changgeng & Zhai, Wenwen & Chen, Zhe & Wu, Hao & Niu, Lanqiang, 2022. "Energy consumption optimization of building air conditioning system via combining the parallel temporal convolutional neural network and adaptive opposition-learning chimp algorithm," Energy, Elsevier, vol. 259(C).
    5. Amir Faraji & Maria Rashidi & Fatemeh Rezaei & Payam Rahnamayiezekavat, 2023. "A Meta-Synthesis Review of Occupant Comfort Assessment in Buildings (2002–2022)," Sustainability, MDPI, vol. 15(5), pages 1-36, February.
    6. Ghahramani, Ali & Pantelic, Jovan & Lindberg, Casey & Mehl, Matthias & Srinivasan, Karthik & Gilligan, Brian & Arens, Edward, 2018. "Learning occupants’ workplace interactions from wearable and stationary ambient sensing systems," Applied Energy, Elsevier, vol. 230(C), pages 42-51.
    7. Van Craenendonck, Stijn & Lauriks, Leen & Vuye, Cedric & Kampen, Jarl, 2018. "A review of human thermal comfort experiments in controlled and semi-controlled environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3365-3378.
    8. Qing Yin & Chunmiao Han & Ailin Li & Xiao Liu & Ying Liu, 2024. "A Review of Research on Building Energy Consumption Prediction Models Based on Artificial Neural Networks," Sustainability, MDPI, vol. 16(17), pages 1-30, September.
    9. Amasyali, Kadir & El-Gohary, Nora M., 2021. "Real data-driven occupant-behavior optimization for reduced energy consumption and improved comfort," Applied Energy, Elsevier, vol. 302(C).
    10. Dalia Mohammed Talat Ebrahim Ali & Violeta Motuzienė & Rasa Džiugaitė-Tumėnienė, 2024. "AI-Driven Innovations in Building Energy Management Systems: A Review of Potential Applications and Energy Savings," Energies, MDPI, vol. 17(17), pages 1-35, August.
    11. Nastro, Francesco & Sorrentino, Marco & Trifirò, Alena, 2022. "A machine learning approach based on neural networks for energy diagnosis of telecommunication sites," Energy, Elsevier, vol. 245(C).
    12. Guilherme V. Hollweg & Shahid A. Khan & Shivam Chaturvedi & Yaoyu Fan & Mengqi Wang & Wencong Su, 2023. "Grid-Connected Converters: A Brief Survey of Topologies, Output Filters, Current Control, and Weak Grids Operation," Energies, MDPI, vol. 16(9), pages 1-31, April.
    13. Xiao, Tianqi & You, Fengqi, 2023. "Building thermal modeling and model predictive control with physically consistent deep learning for decarbonization and energy optimization," Applied Energy, Elsevier, vol. 342(C).
    14. Chaudhuri, Tanaya & Soh, Yeng Chai & Li, Hua & Xie, Lihua, 2019. "A feedforward neural network based indoor-climate control framework for thermal comfort and energy saving in buildings," Applied Energy, Elsevier, vol. 248(C), pages 44-53.
    15. Hua, Pengmin & Wang, Haichao & Xie, Zichan & Lahdelma, Risto, 2024. "Multi-criteria evaluation of novel multi-objective model predictive control method for indoor thermal comfort," Energy, Elsevier, vol. 289(C).
    16. Nishant Raj Kapoor & Ashok Kumar & Tabish Alam & Anuj Kumar & Kishor S. Kulkarni & Paolo Blecich, 2021. "A Review on Indoor Environment Quality of Indian School Classrooms," Sustainability, MDPI, vol. 13(21), pages 1-43, October.
    17. Amini Toosi, Hashem & Del Pero, Claudio & Leonforte, Fabrizio & Lavagna, Monica & Aste, Niccolò, 2023. "Machine learning for performance prediction in smart buildings: Photovoltaic self-consumption and life cycle cost optimization," Applied Energy, Elsevier, vol. 334(C).
    18. DeQuante Rashon Mckoy & Raymond Charles Tesiero & Yaa Takyiwaa Acquaah & Balakrishna Gokaraju, 2023. "Review of HVAC Systems History and Future Applications," Energies, MDPI, vol. 16(17), pages 1-15, August.
    19. Ghahramani, Ali & Castro, Guillermo & Karvigh, Simin Ahmadi & Becerik-Gerber, Burcin, 2018. "Towards unsupervised learning of thermal comfort using infrared thermography," Applied Energy, Elsevier, vol. 211(C), pages 41-49.
    20. van der Meer, Dennis & Wang, Guang Chao & Munkhammar, Joakim, 2021. "An alternative optimal strategy for stochastic model predictive control of a residential battery energy management system with solar photovoltaic," Applied Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:329:y:2023:i:c:s0306261922015409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.