Investigation of a new solar-wind energy-based heat pump dryer for food waste drying based on different weather conditions
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2024.130328
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hamid, Khalid & Sajjad, Uzair & Yang, Kai Shing & Wu, Shih-Kuo & Wang, Chi-Chuan, 2022. "Assessment of an energy efficient closed loop heat pump dryer for high moisture contents materials: An experimental investigation and AI based modelling," Energy, Elsevier, vol. 238(PB).
- Yao, Muchi & Li, Ming & Wang, Yunfeng & Li, Guoliang & Zhang, Ying & Gao, Meng & Deng, Zhihan & Xing, Tianyu & Zhang, Zude & Zhang, Wenxiang, 2023. "Analysis on characteristics and operation mode of direct solar collector coupled heat pump drying system," Renewable Energy, Elsevier, vol. 206(C), pages 223-238.
- Kalogirou, Soteris, 2003. "The potential of solar industrial process heat applications," Applied Energy, Elsevier, vol. 76(4), pages 337-361, December.
- Prakash, Om & Laguri, Vinod & Pandey, Anukul & Kumar, Anil & Kumar, Arbind, 2016. "Review on various modelling techniques for the solar dryers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 396-417.
- Nikitin, Andrey & Farahnak, Mehdi & Deymi-Dashtebayaz, Mahdi & Muraveinikov, Sergei & Nikitina, Veronika & Nazeri, Reza, 2022. "Effect of ice thickness and snow cover depth on performance optimization of ground source heat pump based on the energy, exergy, economic and environmental analysis," Renewable Energy, Elsevier, vol. 185(C), pages 1301-1317.
- Yu, F.W. & Chan, K.T., 2005. "Experimental determination of the energy efficiency of an air-cooled chiller under part load conditions," Energy, Elsevier, vol. 30(10), pages 1747-1758.
- Yao, Jian & Liu, Wenjie & Zhang, Lu & Tian, Binshou & Dai, Yanjun & Huang, Mingjun, 2020. "Performance analysis of a residential heating system using borehole heat exchanger coupled with solar assisted PV/T heat pump," Renewable Energy, Elsevier, vol. 160(C), pages 160-175.
- Singh, Akhilesh & Sarkar, Jahar & Sahoo, Rashmi Rekha, 2020. "Experimental energy, exergy, economic and exergoeconomic analyses of batch-type solar-assisted heat pump dryer," Renewable Energy, Elsevier, vol. 156(C), pages 1107-1116.
- Abbasi Kamazani, Maryam & Aghanajafi, Cyrus, 2022. "Multi-objective optimization and exergoeconomic evaluation of a hybrid geothermal-PVT system integrated with PCM," Energy, Elsevier, vol. 240(C).
- Almahdi, M. & Dincer, I. & Rosen, M.A., 2016. "A new solar based multigeneration system with hot and cold thermal storages and hydrogen production," Renewable Energy, Elsevier, vol. 91(C), pages 302-314.
- Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
- EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
- Kheir Abadi, Majid & Davoodi, Vajihe & Deymi-Dashtebayaz, Mahdi & Ebrahimi-Moghadam, Amir, 2023. "Determining the best scenario for providing electrical, cooling, and hot water consuming of a building with utilizing a novel wind/solar-based hybrid system," Energy, Elsevier, vol. 273(C).
- Ahadi, Amir & Kang, Sang-Kyun & Lee, Jang-Ho, 2016. "A novel approach for optimal combinations of wind, PV, and energy storage system in diesel-free isolated communities," Applied Energy, Elsevier, vol. 170(C), pages 101-115.
- Bal, Lalit M. & Satya, Santosh & Naik, S.N., 2010. "Solar dryer with thermal energy storage systems for drying agricultural food products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2298-2314, October.
- Kuan, M. & Shakir, Ye. & Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2019. "Numerical simulation of a heat pump assisted solar dryer for continental climates," Renewable Energy, Elsevier, vol. 143(C), pages 214-225.
- Zou, Lingeng & Liu, Ye & Yu, Mengqi & Yu, Jianlin, 2023. "A review of solar assisted heat pump technology for drying applications," Energy, Elsevier, vol. 283(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Atalay, Halil & Tunçkal, Cüneyt & Türkdoğan, Sunay & Direk, Mehmet, 2024. "Exergetic, sustainability and exergoeconomic analyses of a fully photovoltaic-powered heat pump tumble dryer," Renewable Energy, Elsevier, vol. 225(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Deymi-Dashtebayaz, Mahdi & Davoodi, Vajihe & Khutornaya, Julia & Sergienko, Olga, 2023. "Parametric analysis and multi-objective optimization of a heat pump dryer based on working conditions and using different refrigerants," Energy, Elsevier, vol. 284(C).
- Kheir Abadi, Majid & Davoodi, Vajihe & Deymi-Dashtebayaz, Mahdi & Ebrahimi-Moghadam, Amir, 2023. "Determining the best scenario for providing electrical, cooling, and hot water consuming of a building with utilizing a novel wind/solar-based hybrid system," Energy, Elsevier, vol. 273(C).
- EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
- Saini, Raj Kumar & Saini, Devender Kumar & Gupta, Rajeev & Verma, Piush & Thakur, Robin & Kumar, Sushil & wassouf, Ali, 2023. "Technological development in solar dryers from 2016 to 2021-A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
- Yao, Muchi & Li, Ming & Wang, Yunfeng & Li, Guoliang & Zhang, Ying & Gao, Meng & Deng, Zhihan & Xing, Tianyu & Zhang, Zude & Zhang, Wenxiang, 2023. "Analysis on characteristics and operation mode of direct solar collector coupled heat pump drying system," Renewable Energy, Elsevier, vol. 206(C), pages 223-238.
- Zou, Lingeng & Liu, Ye & Yu, Mengqi & Yu, Jianlin, 2023. "A review of solar assisted heat pump technology for drying applications," Energy, Elsevier, vol. 283(C).
- Kong, Decheng & Wang, Yunfeng & Li, Ming & Liang, Jingkang, 2024. "A comprehensive review of hybrid solar dryers integrated with auxiliary energy and units for agricultural products," Energy, Elsevier, vol. 293(C).
- Taesub Lim & Yong-Kyu Baik & Daeung Danny Kim, 2020. "Heating Performance Analysis of an Air-to-Water Heat Pump Using Underground Air for Greenhouse Farming," Energies, MDPI, vol. 13(15), pages 1-9, July.
- Amir Hossein Arkian & Gholamhassan Najafi & Shiva Gorjian & Reyhaneh Loni & Evangelos Bellos & Talal Yusaf, 2019. "Performance Assessment of a Solar Dryer System Using Small Parabolic Dish and Alumina/Oil Nanofluid: Simulation and Experimental Study," Energies, MDPI, vol. 12(24), pages 1-22, December.
- Wang, Hui & Torki, Mehdi & Xiao, Hong-Wei & Orsat, Valérie & Raghavan, G.S.V. & Liu, Zi-Liang & Peng, Wen-Jun & Fang, Xiao-Ming, 2022. "Multi-objective analysis of evacuated tube solar-electric hybrid drying setup for drying lotus bee pollen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Xu, Bo & Wang, Dengyun & Li, Zhaohai & Chen, Zhenqian, 2021. "Drying and dynamic performance of well-adapted solar assisted heat pump drying system," Renewable Energy, Elsevier, vol. 164(C), pages 1290-1305.
- Atalay, Halil & Tunçkal, Cüneyt & Türkdoğan, Sunay & Direk, Mehmet, 2024. "Exergetic, sustainability and exergoeconomic analyses of a fully photovoltaic-powered heat pump tumble dryer," Renewable Energy, Elsevier, vol. 225(C).
- Ismail, Muhammad Imran & Yunus, Nor Alafiza & Hashim, Haslenda, 2021. "Integration of solar heating systems for low-temperature heat demand in food processing industry – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
- Lamidi, Rasaq. O. & Jiang, L. & Pathare, Pankaj B. & Wang, Y.D. & Roskilly, A.P., 2019. "Recent advances in sustainable drying of agricultural produce: A review," Applied Energy, Elsevier, vol. 233, pages 367-385.
- Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
- Ding, Xingqi & Zhou, Yufei & Duan, Liqiang & Li, Da & Zheng, Nan, 2023. "Comprehensive performance investigation of a novel solar-assisted liquid air energy storage system with different operating modes in different seasons," Energy, Elsevier, vol. 284(C).
- Ehab AlShamaileh & Iessa Sabbe Moosa & Heba Al-Fayyad & Bashar Lahlouh & Hussein A. Kazem & Qusay Abu-Afifeh & Bety S. Al-Saqarat & Muayad Esaifan & Imad Hamadneh, 2022. "Performance Comparison and Light Reflectance of Al, Cu, and Fe Metals in Direct Contact Flat Solar Heating Systems," Energies, MDPI, vol. 15(23), pages 1-15, November.
- jia, Teng & Huang, Junpeng & Li, Rui & He, Peng & Dai, Yanjun, 2018. "Status and prospect of solar heat for industrial processes in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 475-489.
- Evangelisti, Luca & De Lieto Vollaro, Roberto & Asdrubali, Francesco, 2019. "Latest advances on solar thermal collectors: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
- Joshua Adeniyi Depiver & Sabuj Mallik, 2023. "An Empirical Study on Convective Drying of Ginger Rhizomes Leveraging Environmental Stress Chambers and Linear Heat Conduction Methodology," Agriculture, MDPI, vol. 13(7), pages 1-28, June.
More about this item
Keywords
Food waste; Heat pump dryer; Solar energy; Wind energy; Energy storage;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544224000999. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.