IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v225y2024ics0960148124003392.html
   My bibliography  Save this article

Exergetic, sustainability and exergoeconomic analyses of a fully photovoltaic-powered heat pump tumble dryer

Author

Listed:
  • Atalay, Halil
  • Tunçkal, Cüneyt
  • Türkdoğan, Sunay
  • Direk, Mehmet

Abstract

In this study, the experimental performance of a commercial heat pump tumble dryer (HPTD) system integrated with photovoltaic (PV) was evaluated using energy and exergy analysis. Additionally, a sustainability and exergoeconomic performance analysis of system components was conducted to identify components in need of improvement. The energy consumption of the HPTD was recorded using a power quality analyzer and compared to the energy generated by the PV. Only 17.6% of the energy generated by the panels was consumed by the HPTD, with the remaining portion being utilized by other laboratory devices connected to the same grid, contributing to a sustainable future. In addition to meeting the energy demand, the PV system satisfied the entire power requirement of the HPTD. It was determined that the drying chamber and the compressor together accounted for 74.53% of the total exergy destruction in the system, with this cost being predominantly incurred during the drying process. Moreover, based on the exergy, sustainability, and exergoeconomic analyses conducted, it was concluded that the drying chamber, integrated with the fan unit, exhibited the lowest exergy efficiency (57.04%), the highest waste exergy ratio (0.83%), and the lowest exergoeconomic factor value (0.716) among the system components, indicating the need for improvement in the fan-integrated drying chamber.

Suggested Citation

  • Atalay, Halil & Tunçkal, Cüneyt & Türkdoğan, Sunay & Direk, Mehmet, 2024. "Exergetic, sustainability and exergoeconomic analyses of a fully photovoltaic-powered heat pump tumble dryer," Renewable Energy, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124003392
    DOI: 10.1016/j.renene.2024.120274
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124003392
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120274?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gungor, Aysegul & Erbay, Zafer & Hepbasli, Arif, 2011. "Exergetic analysis and evaluation of a new application of gas engine heat pumps (GEHPs) for food drying processes," Applied Energy, Elsevier, vol. 88(3), pages 882-891, March.
    2. Rosen, Marc A. & Dincer, Ibrahim & Kanoglu, Mehmet, 2008. "Role of exergy in increasing efficiency and sustainability and reducing environmental impact," Energy Policy, Elsevier, vol. 36(1), pages 128-137, January.
    3. Deymi-Dashtebayaz, Mahdi & Kheir Abadi, Majid & Asadi, Mostafa & Khutornaya, Julia & Sergienko, Olga, 2024. "Investigation of a new solar-wind energy-based heat pump dryer for food waste drying based on different weather conditions," Energy, Elsevier, vol. 290(C).
    4. Gungor, Aysegul & Erbay, Zafer & Hepbasli, Arif, 2011. "Exergoeconomic analyses of a gas engine driven heat pump drier and food drying process," Applied Energy, Elsevier, vol. 88(8), pages 2677-2684, August.
    5. Akbulut, Abdullah & Durmuş, Aydin, 2010. "Energy and exergy analyses of thin layer drying of mulberry in a forced solar dryer," Energy, Elsevier, vol. 35(4), pages 1754-1763.
    6. Yao, Muchi & Li, Ming & Wang, Yunfeng & Li, Guoliang & Zhang, Ying & Gao, Meng & Deng, Zhihan & Xing, Tianyu & Zhang, Zude & Zhang, Wenxiang, 2023. "Analysis on characteristics and operation mode of direct solar collector coupled heat pump drying system," Renewable Energy, Elsevier, vol. 206(C), pages 223-238.
    7. Singh, Akhilesh & Sarkar, Jahar & Sahoo, Rashmi Rekha, 2020. "Experimental energy, exergy, economic and exergoeconomic analyses of batch-type solar-assisted heat pump dryer," Renewable Energy, Elsevier, vol. 156(C), pages 1107-1116.
    8. Giuliano Zambonin & Fabio Altinier & Alessandro Beghi & Leandro dos Santos Coelho & Nicola Fiorella & Terenzio Girotto & Mirco Rampazzo & Gilberto Reynoso-Meza & Gian Antonio Susto, 2019. "Machine Learning-Based Soft Sensors for the Estimation of Laundry Moisture Content in Household Dryer Appliances," Energies, MDPI, vol. 12(20), pages 1-24, October.
    9. Atalay, Halil & Aslan, Volkan, 2023. "Advanced exergoeconomic and exergy performance assessments of a wind and solar energy powered hybrid dryer," Renewable Energy, Elsevier, vol. 209(C), pages 218-230.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aghbashlo, Mortaza & Mobli, Hossein & Rafiee, Shahin & Madadlou, Ashkan, 2013. "A review on exergy analysis of drying processes and systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 1-22.
    2. Atalay, Halil & Yavaş, Nur & Turhan Çoban, M., 2022. "Sustainability and performance analysis of a solar and wind energy assisted hybrid dryer," Renewable Energy, Elsevier, vol. 187(C), pages 1173-1183.
    3. Atalay, Halil & Aslan, Volkan, 2023. "Advanced exergoeconomic and exergy performance assessments of a wind and solar energy powered hybrid dryer," Renewable Energy, Elsevier, vol. 209(C), pages 218-230.
    4. Ndukwu, M.C. & Bennamoun, L. & Abam, F.I. & Eke, A.B. & Ukoha, D., 2017. "Energy and exergy analysis of a solar dryer integrated with sodium sulfate decahydrate and sodium chloride as thermal storage medium," Renewable Energy, Elsevier, vol. 113(C), pages 1182-1192.
    5. Bartosz Pawela & Marek Jaszczur, 2022. "Review of Gas Engine Heat Pumps," Energies, MDPI, vol. 15(13), pages 1-16, July.
    6. Amiri Rad, Ehsan & Maddah, Saeed & Mohammadi, Saeed, 2020. "Designing and optimizing a novel cogeneration system for an office building based on thermo-economic and environmental analyses," Renewable Energy, Elsevier, vol. 151(C), pages 342-354.
    7. Beigi, Mohsen & Tohidi, Mojtaba & Torki-Harchegani, Mehdi, 2017. "Exergetic analysis of deep-bed drying of rough rice in a convective dryer," Energy, Elsevier, vol. 140(P1), pages 374-382.
    8. Atalay, Halil & Cankurtaran, Eda, 2021. "Energy, exergy, exergoeconomic and exergo-environmental analyses of a large scale solar dryer with PCM energy storage medium," Energy, Elsevier, vol. 216(C).
    9. Atalay, Halil, 2019. "Performance analysis of a solar dryer integrated with the packed bed thermal energy storage (TES) system," Energy, Elsevier, vol. 172(C), pages 1037-1052.
    10. Deymi-Dashtebayaz, Mahdi & Kheir Abadi, Majid & Asadi, Mostafa & Khutornaya, Julia & Sergienko, Olga, 2024. "Investigation of a new solar-wind energy-based heat pump dryer for food waste drying based on different weather conditions," Energy, Elsevier, vol. 290(C).
    11. Fu, Jianqin & Liu, Jingping & Feng, Renhua & Yang, Yanping & Wang, Linjun & Wang, Yong, 2013. "Energy and exergy analysis on gasoline engine based on mapping characteristics experiment," Applied Energy, Elsevier, vol. 102(C), pages 622-630.
    12. Ahn, Jae Hwan & Kang, Hoon & Lee, Ho Seong & Kim, Yongchan, 2015. "Performance characteristics of a dual-evaporator heat pump system for effective dehumidifying and heating of a cabin in electric vehicles," Applied Energy, Elsevier, vol. 146(C), pages 29-37.
    13. Defraeye, Thijs, 2014. "Advanced computational modelling for drying processes – A review," Applied Energy, Elsevier, vol. 131(C), pages 323-344.
    14. Hou, Feng & He, Ting & Lu, Yan & Sun, Hongchuang & Li, Yawei & Yuan, Pei, 2024. "Experimental and simulation study on the performance of a solar assisted multi-source heat pump drying system in Zhengzhou area," Renewable Energy, Elsevier, vol. 229(C).
    15. Sorgüven, Esra & Özilgen, Mustafa, 2012. "Energy utilization, carbon dioxide emission, and exergy loss in flavored yogurt production process," Energy, Elsevier, vol. 40(1), pages 214-225.
    16. Lamidi, Rasaq. O. & Jiang, L. & Pathare, Pankaj B. & Wang, Y.D. & Roskilly, A.P., 2019. "Recent advances in sustainable drying of agricultural produce: A review," Applied Energy, Elsevier, vol. 233, pages 367-385.
    17. Zou, Lingeng & Liu, Ye & Yu, Mengqi & Yu, Jianlin, 2023. "A review of solar assisted heat pump technology for drying applications," Energy, Elsevier, vol. 283(C).
    18. Atalay, Halil, 2022. "Exergoeconomic and environmental impact evaluation of wind energy assisted hybrid solar dryer and conventional solar dryer," Renewable Energy, Elsevier, vol. 200(C), pages 1416-1425.
    19. Alvin Kiprono Bett & Saeid Jalilinasrabady, 2021. "Optimization of ORC Power Plants for Geothermal Application in Kenya by Combining Exergy and Pinch Point Analysis," Energies, MDPI, vol. 14(20), pages 1-17, October.
    20. Oyekale, Joseph & Petrollese, Mario & Cau, Giorgio, 2020. "Modified auxiliary exergy costing in advanced exergoeconomic analysis applied to a hybrid solar-biomass organic Rankine cycle plant," Applied Energy, Elsevier, vol. 268(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124003392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.