IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v164y2021icp1290-1305.html
   My bibliography  Save this article

Drying and dynamic performance of well-adapted solar assisted heat pump drying system

Author

Listed:
  • Xu, Bo
  • Wang, Dengyun
  • Li, Zhaohai
  • Chen, Zhenqian

Abstract

A new type of well-adapted solar assisted heat pump drying system (SAHPDS) was put forward to choose and switch more efficient and energy-saving drying mode according to outdoor environment. The drying characteristics of shiitake mushroom, energy consumption level and running characteristics of system under five drying modes were investigated systematically. The drying modes were independent solar drying system (ISDS), independent closed heat pump drying system (ICHPDS), and SAHPDS of closed, open and semi-open modes. The results concluded drying system performed well in each mode. In ISDS, inlet air temperature of drying chamber can reach above 50 °C, heat collection efficiency of solar air collector (SAC) is 0.562 and SMER is 3.56 kg/kWh. In ICHPDS, the average COP is negatively correlated with air temperature and loading capacity, while positively correlated with air speed. In SAHPDS (assisted only by SAC), the average air temperature is 59.17, 62.38 and 60.83 °C in open, closed and semi-open modes at air speed of 3.5 m/s. With the corresponding modes, the heat collection efficiency of SAC was 0.526, 0.223 and 0.434 respectively. The average COP is 3.08, 2.68 and 3.20, which is significantly more energy-saving than ICHPDS mode in order to obtain same air temperature. In the later drying period, it switched to the closed drying mode of SAHPDS (only assisted by solar collector (SC)). In addition, the energy saving rate can reach 37.96% compared with ICHPDS under the same condition. The study provides a guidance and reference for the operation mode switch of SAHPDS with higher energy saving and efficiency.

Suggested Citation

  • Xu, Bo & Wang, Dengyun & Li, Zhaohai & Chen, Zhenqian, 2021. "Drying and dynamic performance of well-adapted solar assisted heat pump drying system," Renewable Energy, Elsevier, vol. 164(C), pages 1290-1305.
  • Handle: RePEc:eee:renene:v:164:y:2021:i:c:p:1290-1305
    DOI: 10.1016/j.renene.2020.10.104
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120316700
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.10.104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kuan, M. & Shakir, Ye. & Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2019. "Numerical simulation of a heat pump assisted solar dryer for continental climates," Renewable Energy, Elsevier, vol. 143(C), pages 214-225.
    2. Singh, Akhilesh & Sarkar, Jahar & Sahoo, Rashmi Rekha, 2020. "Experimental energy, exergy, economic and exergoeconomic analyses of batch-type solar-assisted heat pump dryer," Renewable Energy, Elsevier, vol. 156(C), pages 1107-1116.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gu, Xinzhuang & Dai, Jianguo & Li, Haifeng & Dai, Yanjun, 2022. "Experimental and theoretical assessment of a solar assisted heat pump system for in-bin grain drying: A comprehensive case study," Renewable Energy, Elsevier, vol. 181(C), pages 426-444.
    2. Atalay, Halil & Aslan, Volkan, 2023. "Advanced exergoeconomic and exergy performance assessments of a wind and solar energy powered hybrid dryer," Renewable Energy, Elsevier, vol. 209(C), pages 218-230.
    3. Chi, Xiang & Tang, Sai & Song, Xiaoxue & Rahimi, Sohrab & Ren, Zechun & Han, Guangping & Shi, Sheldon Q. & Cheng, Wanli & Avramidis, Stavros, 2023. "Energy and quality analysis of forced convection air-energy assisted solar timber drying," Energy, Elsevier, vol. 283(C).
    4. Zhang, L.Z. & Jiang, L. & Xu, Z.C. & Zhang, X.J. & Fan, Y.B. & Adnouni, M. & Zhang, C.B., 2022. "Optimization of a variable-temperature heat pump drying process of shiitake mushrooms using response surface methodology," Renewable Energy, Elsevier, vol. 198(C), pages 1267-1278.
    5. Hou, Feng & He, Ting & Lu, Yan & Sun, Hongchuang & Li, Yawei & Yuan, Pei, 2024. "Experimental and simulation study on the performance of a solar assisted multi-source heat pump drying system in Zhengzhou area," Renewable Energy, Elsevier, vol. 229(C).
    6. Yu, Xinyi & Wu, Weidong & Wang, Jing & Jin, Yunfei & Li, Zhenbo, 2022. "Experimental study on effect of drying air supply temperature on performance of a quasi-two-stage closed loop heat pump drying system for lentinus edodes," Renewable Energy, Elsevier, vol. 201(P1), pages 1038-1049.
    7. Zou, Lingeng & Liu, Ye & Yu, Jianlin, 2023. "Energy, exergy and economic evaluation of a solar enhanced ejector expansion heat pump cycle," Renewable Energy, Elsevier, vol. 217(C).
    8. Hao, Wengang & Liu, Shuonan & Lai, Yanhua & Wang, Mingtao & Liu, Shengze, 2022. "Research on drying Lentinus edodes in a direct expansion heat pump assisted solar drying system and performance of different operating modes," Renewable Energy, Elsevier, vol. 196(C), pages 638-647.
    9. Zou, Lingeng & Liu, Ye & Yu, Mengqi & Yu, Jianlin, 2023. "A review of solar assisted heat pump technology for drying applications," Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taesub Lim & Yong-Kyu Baik & Daeung Danny Kim, 2020. "Heating Performance Analysis of an Air-to-Water Heat Pump Using Underground Air for Greenhouse Farming," Energies, MDPI, vol. 13(15), pages 1-9, July.
    2. Deymi-Dashtebayaz, Mahdi & Kheir Abadi, Majid & Asadi, Mostafa & Khutornaya, Julia & Sergienko, Olga, 2024. "Investigation of a new solar-wind energy-based heat pump dryer for food waste drying based on different weather conditions," Energy, Elsevier, vol. 290(C).
    3. Yao, Muchi & Li, Ming & Wang, Yunfeng & Li, Guoliang & Zhang, Ying & Gao, Meng & Deng, Zhihan & Xing, Tianyu & Zhang, Zude & Zhang, Wenxiang, 2023. "Analysis on characteristics and operation mode of direct solar collector coupled heat pump drying system," Renewable Energy, Elsevier, vol. 206(C), pages 223-238.
    4. Yu, Xinyi & Wu, Weidong & Wang, Jing & Jin, Yunfei & Li, Zhenbo, 2022. "Experimental study on effect of drying air supply temperature on performance of a quasi-two-stage closed loop heat pump drying system for lentinus edodes," Renewable Energy, Elsevier, vol. 201(P1), pages 1038-1049.
    5. Khanlari, Ataollah & Tuncer, Azim Doğuş, 2023. "Analysis of an infrared-assisted triple-flow prototype solar drying system with nano-embedded absorber coating: An experimental and numerical study," Renewable Energy, Elsevier, vol. 216(C).
    6. Ali Khalid Shaker Al-Sayyab & Joaquín Navarro-Esbrí & Victor Manuel Soto-Francés & Adrián Mota-Babiloni, 2021. "Conventional and Advanced Exergoeconomic Analysis of a Compound Ejector-Heat Pump for Simultaneous Cooling and Heating," Energies, MDPI, vol. 14(12), pages 1-27, June.
    7. Atalay, Halil & Cankurtaran, Eda, 2021. "Energy, exergy, exergoeconomic and exergo-environmental analyses of a large scale solar dryer with PCM energy storage medium," Energy, Elsevier, vol. 216(C).
    8. Saini, Raj Kumar & Saini, Devender Kumar & Gupta, Rajeev & Verma, Piush & Thakur, Robin & Kumar, Sushil & wassouf, Ali, 2023. "Technological development in solar dryers from 2016 to 2021-A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    9. Singh, Akhilesh & Sarkar, Jahar & Sahoo, Rashmi Rekha, 2020. "Experimental energy, exergy, economic and exergoeconomic analyses of batch-type solar-assisted heat pump dryer," Renewable Energy, Elsevier, vol. 156(C), pages 1107-1116.
    10. Wang, Hui & Torki, Mehdi & Xiao, Hong-Wei & Orsat, Valérie & Raghavan, G.S.V. & Liu, Zi-Liang & Peng, Wen-Jun & Fang, Xiao-Ming, 2022. "Multi-objective analysis of evacuated tube solar-electric hybrid drying setup for drying lotus bee pollen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    11. Abbas Sahi Shareef & Hayder Jabbar Kurji & Ali Bani Khassaf & Iman M Abd Zaid, 2022. "Technologies for Purified Water Extraction Using Single-Slope Solar Stills Equipped With Magnets and Graphite Fins," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 9(10), pages 01-08, October.
    12. Evan Eduard Susanto & Agus Saptoro & Perumal Kumar & Angnes Ngieng Tze Tiong & Aditya Putranto & Suherman Suherman, 2024. "7E + Q analysis: a new multi-dimensional assessment tool of solar dryer for food and agricultural products," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 16363-16385, July.
    13. Atalay, Halil & Yavaş, Nur & Turhan Çoban, M., 2022. "Sustainability and performance analysis of a solar and wind energy assisted hybrid dryer," Renewable Energy, Elsevier, vol. 187(C), pages 1173-1183.
    14. Badiei, A. & Golizadeh Akhlaghi, Y. & Zhao, X. & Shittu, S. & Xiao, X. & Li, J. & Fan, Y. & Li, G., 2020. "A chronological review of advances in solar assisted heat pump technology in 21st century," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    15. Atalay, Halil & Tunçkal, Cüneyt & Türkdoğan, Sunay & Direk, Mehmet, 2024. "Exergetic, sustainability and exergoeconomic analyses of a fully photovoltaic-powered heat pump tumble dryer," Renewable Energy, Elsevier, vol. 225(C).
    16. Heydari, Ali, 2022. "Experimental analysis of hybrid dryer combined with spiral solar air heater and auxiliary heating system: Energy, exergy and economic analysis," Renewable Energy, Elsevier, vol. 198(C), pages 1162-1175.
    17. Atalay, Halil & Aslan, Volkan, 2023. "Advanced exergoeconomic and exergy performance assessments of a wind and solar energy powered hybrid dryer," Renewable Energy, Elsevier, vol. 209(C), pages 218-230.
    18. Bourhan Tashtoush & Iscah Songa & Tatiana Morosuk, 2022. "Exergoeconomic Analysis of a Variable Area Solar Ejector Refrigeration System under Hot Climatic Conditions," Energies, MDPI, vol. 15(24), pages 1-19, December.
    19. Yu, Xiaohui & Guo, Zhonglian & Gao, Zhi & Yang, Bin & Ma, Xiuqin & Dong, Shengming, 2023. "Thermodynamic investigation of a direct-expansion solar assisted heat pump with evacuated tube collector-evaporator," Renewable Energy, Elsevier, vol. 206(C), pages 418-427.
    20. Sahin, Erol & Adiguzel, Nesrin, 2022. "Experimental analysis of the effects of climate conditions on heat pump system performance," Energy, Elsevier, vol. 243(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:164:y:2021:i:c:p:1290-1305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.