IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v290y2024ics0360544223033650.html
   My bibliography  Save this article

Giga-ton and tera-watt scale challenges at the energy - climate crossroads: A global perspective

Author

Listed:
  • Gür, Turgut M.

Abstract

Energy related CO2 emissions from fossil fuels constitute nearly 80 % of the global greenhouse gas emissions and are largely responsible for effecting climate change. There is imminent need to reduce emissions and decarbonize the energy economy. Renewables and nuclear are the only carbon-free energy options. However, the pace of renewable deployment lags the rate needed to achieve net-zero by 2050. Also, fossil fuels are expected to continue to dominate the energy landscape into the foreseeable future.

Suggested Citation

  • Gür, Turgut M., 2024. "Giga-ton and tera-watt scale challenges at the energy - climate crossroads: A global perspective," Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223033650
    DOI: 10.1016/j.energy.2023.129971
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223033650
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129971?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Usman, Muhammad R., 2022. "Hydrogen storage methods: Review and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Corbett Grainger & Charles Kolstad, 2010. "Who Pays a Price on Carbon?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 46(3), pages 359-376, July.
    3. Zhou, Chenyang & Zhang, Chen & Zhang, Teng & Zhang, Jingfeng & Ma, Pengfei & Yu, Yunsong & Zhang, Zaoxiao & Wang, Geoff G.X., 2023. "Single-atom solutions promote carbon dioxide capture," Applied Energy, Elsevier, vol. 332(C).
    4. Seungdoo Park & John M. Vohs & Raymond J. Gorte, 2000. "Direct oxidation of hydrocarbons in a solid-oxide fuel cell," Nature, Nature, vol. 404(6775), pages 265-267, March.
    5. Chuancheng Duan & Robert Kee & Huayang Zhu & Neal Sullivan & Liangzhu Zhu & Liuzhen Bian & Dylan Jennings & Ryan O’Hayre, 2019. "Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production," Nature Energy, Nature, vol. 4(3), pages 230-240, March.
    6. Philip Boyd & Chris Vivian, 2019. "Should we fertilize oceans or seed clouds? No one knows," Nature, Nature, vol. 570(7760), pages 155-157, June.
    7. Castillo, Renzo, 2011. "Thermodynamic analysis of a hard coal oxyfuel power plant with high temperature three-end membrane for air separation," Applied Energy, Elsevier, vol. 88(5), pages 1480-1493, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brown, Marilyn A. & Li, Yufei & Soni, Anmol, 2020. "Are all jobs created equal? Regional employment impacts of a U.S. carbon tax," Applied Energy, Elsevier, vol. 262(C).
    2. Macdonald, Kevin & Patrinos, Harry Anthony, 2021. "Education Quality, Green Technology, and the Economic Impact of Carbon Pricing," GLO Discussion Paper Series 955, Global Labor Organization (GLO).
    3. Katri Kosonen, 2012. "Regressivity of environmental taxation: myth or reality?," Taxation Papers 32, Directorate General Taxation and Customs Union, European Commission.
    4. Stephie Fried & Kevin Novan & William B. Peterman, 2021. "Recycling Carbon Tax Revenue to Maximize Welfare," Finance and Economics Discussion Series 2021-023, Board of Governors of the Federal Reserve System (U.S.).
    5. Haan, Peter & Simmler, Martin, 2018. "Wind electricity subsidies — A windfall for landowners? Evidence from a feed-in tariff in Germany," Journal of Public Economics, Elsevier, vol. 159(C), pages 16-32.
    6. Julie Anne Cronin & Don Fullerton & Steven Sexton, 2019. "Vertical and Horizontal Redistributions from a Carbon Tax and Rebate," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 6(S1), pages 169-208.
    7. Na Yeon An & Jung Hyun Yang & Eunyong Song & Sung-Ho Hwang & Hyung-Gi Byun & Sanguk Park, 2024. "Digital Twin-Based Hydrogen Refueling Station (HRS) Safety Model: CNN-Based Decision-Making and 3D Simulation," Sustainability, MDPI, vol. 16(21), pages 1-26, October.
    8. Csilla Königswieser & Benjamin Neudorfer & Martin Schneider, 2021. "Supplement to “OeNB climate risk stress test – modeling a carbon price shock for the Austrian banking sector”," Financial Stability Report, Oesterreichische Nationalbank (Austrian Central Bank), issue 42.
    9. Tran, Trang, 2015. "The Distributional and Welfare Effects of the Australian Emissions Trading Scheme," Conference papers 332652, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    10. Peter Grösche & Carsten Schröder, 2014. "On the redistributive effects of Germany’s feed-in tariff," Empirical Economics, Springer, vol. 46(4), pages 1339-1383, June.
    11. Corbett Grainger & Thanicha Ruangmas, 2018. "Who Wins from Emissions Trading? Evidence from California," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(3), pages 703-727, November.
    12. Nils Ohlendorf & Michael Jakob & Jan Christoph Minx & Carsten Schröder & Jan Christoph Steckel, 2021. "Distributional Impacts of Carbon Pricing: A Meta-Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 78(1), pages 1-42, January.
    13. Serrano, José Ramón & Arnau, Francisco José & García-Cuevas, Luis Miguel & Gutiérrez, Fabio Alberto, 2022. "Thermo-economic analysis of an oxygen production plant powered by an innovative energy recovery system," Energy, Elsevier, vol. 255(C).
    14. Junior Diamant Ngando Ebba & Mamadou Baïlo Camara & Mamadou Lamine Doumbia & Brayima Dakyo & Joseph Song-Manguelle, 2023. "Large-Scale Hydrogen Production Systems Using Marine Renewable Energies: State-of-the-Art," Energies, MDPI, vol. 17(1), pages 1-23, December.
    15. Arik Levinson, 2019. "Energy Efficiency Standards Are More Regressive Than Energy Taxes: Theory and Evidence," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 6(S1), pages 7-36.
    16. Gómez, Sergio Yesid & Hotza, Dachamir, 2016. "Current developments in reversible solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 155-174.
    17. Frederick Ploeg, 2021. "Carbon pricing under uncertainty," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 28(5), pages 1122-1142, October.
    18. Roberton C. Williams III, 2016. "Environmental Taxation," NBER Working Papers 22303, National Bureau of Economic Research, Inc.
    19. de Bruin, Kelly & Yakut, Aykut Mert, 2024. "Efficiency–equity trade-off in the Irish carbon tax: A CGE investigation of mixed revenue recycling schemes," Economic Modelling, Elsevier, vol. 134(C).
    20. Beata Kurc & Xymena Gross & Natalia Szymlet & Łukasz Rymaniak & Krystian Woźniak & Marita Pigłowska, 2024. "Hydrogen-Powered Vehicles: A Paradigm Shift in Sustainable Transportation," Energies, MDPI, vol. 17(19), pages 1-38, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223033650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.