IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i5p1480-1493.html
   My bibliography  Save this article

Thermodynamic analysis of a hard coal oxyfuel power plant with high temperature three-end membrane for air separation

Author

Listed:
  • Castillo, Renzo

Abstract

Cryogenic air separation is a mature state-of-the-art technology to produce the high tonnage of oxygen required for oxyfuel power plants. However, this technology represents an important burden to the net plant efficiency (losses between 8% and 12%-points). High temperature ceramic membranes, associated with significantly lower efficiency losses, are foreseen as the best candidate to challenge cryogenics for high tonnage oxygen production. Although this technology is still at an embryonic state of development, the three-end membrane operation mode offers important technical advantages over the four-end mode that can be a good technological option in the near future. This paper analyzes the influence of both, the cryogenic and three-end high temperature membrane air separation units on the net oxyfuel plant efficiency considering the same boundary conditions and different equivalent thermal integrations. Moreover, the oxygen permeation rate, heat recovery, and required membrane area are also evaluated at different membrane operating conditions. Using a state-of-the-art perovskite BSCF as membrane material, net plant efficiency losses up to 5.1%-points can be reached requiring around 400,000Â m2 of membrane area. Applying this membrane-based technology it is possible to improve the oxyfuel plant efficiency over 4%-points (compared with cryogenic technology); however, it is still necessary to develop new ceramic materials to reduce the amount of membrane area required.

Suggested Citation

  • Castillo, Renzo, 2011. "Thermodynamic analysis of a hard coal oxyfuel power plant with high temperature three-end membrane for air separation," Applied Energy, Elsevier, vol. 88(5), pages 1480-1493, May.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:5:p:1480-1493
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00459-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schreiber, A. & Zapp, P. & Markewitz, P. & Vögele, S., 2010. "Environmental analysis of a German strategy for carbon capture and storage of coal power plants," Energy Policy, Elsevier, vol. 38(12), pages 7873-7883, December.
    2. Yantovski, E. & Gorski, J. & Smyth, B. & ten Elshof, J., 2004. "Zero-emission fuel-fired power plants with ion transport membrane," Energy, Elsevier, vol. 29(12), pages 2077-2088.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Chang’an & Zhang, Xiaoming & Liu, Yinhe & Che, Defu, 2012. "Pyrolysis and combustion characteristics of coals in oxyfuel combustion," Applied Energy, Elsevier, vol. 97(C), pages 264-273.
    2. Mansir, Ibrahim B. & Ben-Mansour, Rached & Habib, Mohamed A., 2018. "Oxy-fuel combustion in a two-pass oxygen transport reactor for fire tube boiler application," Applied Energy, Elsevier, vol. 229(C), pages 828-840.
    3. Habib, Mohamed A. & Imteyaz, Binash & Nemitallah, Medhat A., 2020. "Second law analysis of premixed and non-premixed oxy-fuel combustion cycles utilizing oxygen separation membranes," Applied Energy, Elsevier, vol. 259(C).
    4. Kotowicz, Janusz & Michalski, Sebastian, 2016. "Thermodynamic and economic analysis of a supercritical and an ultracritical oxy-type power plant without and with waste heat recovery," Applied Energy, Elsevier, vol. 179(C), pages 806-820.
    5. Puig-Arnavat, Maria & Søgaard, Martin & Hjuler, Klaus & Ahrenfeldt, Jesper & Henriksen, Ulrik Birk & Hendriksen, Peter Vang, 2015. "Integration of oxygen membranes for oxygen production in cement plants," Energy, Elsevier, vol. 91(C), pages 852-865.
    6. Chi, Chung-Cheng & Lin, Ta-Hui, 2013. "Oxy-oil combustion characteristics of an existing furnace," Applied Energy, Elsevier, vol. 102(C), pages 923-930.
    7. Gładysz, Paweł & Stanek, Wojciech & Czarnowska, Lucyna & Sładek, Sławomir & Szlęk, Andrzej, 2018. "Thermo-ecological evaluation of an integrated MILD oxy-fuel combustion power plant with CO2 capture, utilisation, and storage – A case study in Poland," Energy, Elsevier, vol. 144(C), pages 379-392.
    8. Miroslav Variny & Dominika Jediná & Miroslav Rimár & Ján Kizek & Marianna Kšiňanová, 2021. "Cutting Oxygen Production-Related Greenhouse Gas Emissions by Improved Compression Heat Management in a Cryogenic Air Separation Unit," IJERPH, MDPI, vol. 18(19), pages 1-32, October.
    9. Gür, Turgut M., 2024. "Giga-ton and tera-watt scale challenges at the energy - climate crossroads: A global perspective," Energy, Elsevier, vol. 290(C).
    10. Wang, B. & Sun, L.S. & Su, S. & Xiang, J. & Hu, S. & Fei, H., 2012. "A kinetic study of NO formation during oxy-fuel combustion of pyridine," Applied Energy, Elsevier, vol. 92(C), pages 361-368.
    11. Meriläinen, Arttu & Seppälä, Ari & Kauranen, Pertti, 2012. "Minimizing specific energy consumption of oxygen enrichment in polymeric hollow fiber membrane modules," Applied Energy, Elsevier, vol. 94(C), pages 285-294.
    12. Prabu, V. & Jayanti, S., 2012. "Underground coal-air gasification based solid oxide fuel cell system," Applied Energy, Elsevier, vol. 94(C), pages 406-414.
    13. Yin, Chungen & Yan, Jinyue, 2016. "Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling," Applied Energy, Elsevier, vol. 162(C), pages 742-762.
    14. Cabral, Renato P. & Mac Dowell, Niall, 2017. "A novel methodological approach for achieving £/MWh cost reduction of CO2 capture and storage (CCS) processes," Applied Energy, Elsevier, vol. 205(C), pages 529-539.
    15. Serrano, José Ramón & Arnau, Francisco José & García-Cuevas, Luis Miguel & Gutiérrez, Fabio Alberto, 2022. "Thermo-economic analysis of an oxygen production plant powered by an innovative energy recovery system," Energy, Elsevier, vol. 255(C).
    16. Kotowicz, Janusz & Michalski, Sebastian, 2015. "Influence of four-end HTM (high temperature membrane) parameters on the thermodynamic and economic characteristics of a supercritical power plant," Energy, Elsevier, vol. 81(C), pages 662-673.
    17. Janusz Kotowicz & Sebastian Michalski & Mateusz Brzęczek, 2019. "The Characteristics of a Modern Oxy-Fuel Power Plant," Energies, MDPI, vol. 12(17), pages 1-34, September.
    18. Shin, Donghwan & Kang, Sanggyu, 2018. "Numerical analysis of an ion transport membrane system for oxy–fuel combustion," Applied Energy, Elsevier, vol. 230(C), pages 875-888.
    19. Janusz-Szymańska, Katarzyna & Dryjańska, Aleksandra, 2015. "Possibilities for improving the thermodynamic and economic characteristics of an oxy-type power plant with a cryogenic air separation unit," Energy, Elsevier, vol. 85(C), pages 45-61.
    20. García-Luna, S. & Ortiz, C. & Carro, A. & Chacartegui, R. & Pérez-Maqueda, L.A., 2022. "Oxygen production routes assessment for oxy-fuel combustion," Energy, Elsevier, vol. 254(PB).
    21. Kotowicz, Janusz & Michalski, Sebastian, 2014. "Efficiency analysis of a hard-coal-fired supercritical power plant with a four-end high-temperature membrane for air separation," Energy, Elsevier, vol. 64(C), pages 109-119.
    22. Gładysz, Paweł & Stanek, Wojciech & Czarnowska, Lucyna & Węcel, Gabriel & Langørgen, Øyvind, 2017. "Thermodynamic assessment of an integrated MILD oxyfuel combustion power plant," Energy, Elsevier, vol. 137(C), pages 761-774.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Janusz-Szymańska, Katarzyna & Dryjańska, Aleksandra, 2015. "Possibilities for improving the thermodynamic and economic characteristics of an oxy-type power plant with a cryogenic air separation unit," Energy, Elsevier, vol. 85(C), pages 45-61.
    2. Habib, Mohamed A. & Nemitallah, Medhat A. & Afaneh, Dia' Al-deen, 2018. "Numerical investigation of a hybrid polymeric-ceramic membrane unit for carbon-free oxy-combustion applications," Energy, Elsevier, vol. 147(C), pages 362-376.
    3. Olsson, Linda & Wetterlund, Elisabeth & Söderström, Mats, 2015. "Assessing the climate impact of district heating systems with combined heat and power production and industrial excess heat," Resources, Conservation & Recycling, Elsevier, vol. 96(C), pages 31-39.
    4. Kotowicz, Janusz & Michalski, Sebastian, 2014. "Efficiency analysis of a hard-coal-fired supercritical power plant with a four-end high-temperature membrane for air separation," Energy, Elsevier, vol. 64(C), pages 109-119.
    5. Vatalis, Konstantinos I. & Laaksonen, Aatto & Charalampides, George & Benetis, Nikolas P., 2012. "Intermediate technologies towards low-carbon economy. The Greek zeolite CCS outlook into the EU commitments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3391-3400.
    6. Vögele, Stefan & Rübbelke, Dirk & Mayer, Philip & Kuckshinrichs, Wilhelm, 2018. "Germany’s “No” to carbon capture and storage: Just a question of lacking acceptance?," Applied Energy, Elsevier, vol. 214(C), pages 205-218.
    7. Fan, Jing-Li & Li, Zezheng & Li, Kai & Zhang, Xian, 2022. "Modelling plant-level abatement costs and effects of incentive policies for coal-fired power generation retrofitted with CCUS," Energy Policy, Elsevier, vol. 165(C).
    8. Kotowicz, Janusz & Michalski, Sebastian, 2015. "Influence of four-end HTM (high temperature membrane) parameters on the thermodynamic and economic characteristics of a supercritical power plant," Energy, Elsevier, vol. 81(C), pages 662-673.
    9. Cho, Hannah Hyunah & Strezov, Vladimir, 2021. "Comparative analysis of the environmental impacts of Australian thermal power stations using direct emission data and GIS integrated methods," Energy, Elsevier, vol. 231(C).
    10. Gunasekaran, S. & Mancini, N.D. & Mitsos, A., 2014. "Optimal design and operation of membrane-based oxy-combustion power plants," Energy, Elsevier, vol. 70(C), pages 338-354.
    11. Paweł Ziółkowski & Stanisław Głuch & Piotr Józef Ziółkowski & Janusz Badur, 2022. "Compact High Efficiency and Zero-Emission Gas-Fired Power Plant with Oxy-Combustion and Carbon Capture," Energies, MDPI, vol. 15(7), pages 1-39, April.
    12. Othman, M.R. & Martunus & Zakaria, R. & Fernando, W.J.N., 2009. "Strategic planning on carbon capture from coal fired plants in Malaysia and Indonesia: A review," Energy Policy, Elsevier, vol. 37(5), pages 1718-1735, May.
    13. Sathre, Roger & Chester, Mikhail & Cain, Jennifer & Masanet, Eric, 2012. "A framework for environmental assessment of CO2 capture and storage systems," Energy, Elsevier, vol. 37(1), pages 540-548.
    14. Mancini, N.D. & Mitsos, A., 2011. "Ion transport membrane reactors for oxy-combustion – Part I: intermediate-fidelity modeling," Energy, Elsevier, vol. 36(8), pages 4701-4720.
    15. Kotowicz, Janusz & Job, Marcin & Brzęczek, Mateusz, 2020. "Thermodynamic analysis and optimization of an oxy-combustion combined cycle power plant based on a membrane reactor equipped with a high-temperature ion transport membrane ITM," Energy, Elsevier, vol. 205(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:5:p:1480-1493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.