IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v301y2021ics0306261921008370.html
   My bibliography  Save this article

Joint planning of electrical storage and gas storage in power-gas distribution network considering high-penetration electric vehicle and gas vehicle

Author

Listed:
  • Gu, Chenjia
  • Zhang, Yao
  • Wang, Jianxue
  • Li, Qingtao

Abstract

Increasing penetration of electric vehicles (EVs) and gas vehicles (GVs) will endanger safe and stable operation of power-gas distribution network. Energy storage systems are considered effective tools to deal with the surge of charging demands brought by EV/GV and enhance energy supply reliability. Meanwhile, the coupling between power and gas distribution systems has been strengthened in recent years via gas turbines. This makes it possible and imperative to jointly optimize the configuration of electrical and gas storage systems and avoid the overinvestment commonly occurring in separate planning. To this end, this paper proposes a joint electrical and gas energy storage planning approach considering the interdependency between power-gas distribution network and transportation network. First, the semi-dynamic traffic assignment method is utilized to obtain EV/GV traffic flow and its transition between two adjacent periods. EV/GV traffic flow is directly related to EV/GV charging demands and can be further converted into their spatial–temporal distribution. Second, a novel second-order cone formulation is proposed to accurately describe the nonlinear operating characteristic of gas storage system. This can help to incorporate the constraints associated with the effective operation of gas storage systems into the planning model, while ensuring the computational tractability. Finally, the proposed planning problem is formulated as a mixed-integer second-order conic programming problem. A penalty convex-concave procedure algorithm is developed to ensure the exactness of all second-order cone relaxations in our proposed model. Numerical results indicate that joint planning strategy can fulfill the peak charging load while yielding to low investment cost.

Suggested Citation

  • Gu, Chenjia & Zhang, Yao & Wang, Jianxue & Li, Qingtao, 2021. "Joint planning of electrical storage and gas storage in power-gas distribution network considering high-penetration electric vehicle and gas vehicle," Applied Energy, Elsevier, vol. 301(C).
  • Handle: RePEc:eee:appene:v:301:y:2021:i:c:s0306261921008370
    DOI: 10.1016/j.apenergy.2021.117447
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921008370
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117447?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jueying & Hu, Zhijian & Xie, Shiwei, 2019. "Expansion planning model of multi-energy system with the integration of active distribution network," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Lv, Si & Wei, Zhinong & Chen, Sheng & Sun, Guoqiang & Wang, Dan, 2021. "Integrated demand response for congestion alleviation in coupled power and transportation networks," Applied Energy, Elsevier, vol. 283(C).
    3. Das, Choton K. & Bass, Octavian & Kothapalli, Ganesh & Mahmoud, Thair S. & Habibi, Daryoush, 2018. "Overview of energy storage systems in distribution networks: Placement, sizing, operation, and power quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1205-1230.
    4. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).
    5. Das, Choton K. & Bass, Octavian & Mahmoud, Thair S. & Kothapalli, Ganesh & Mousavi, Navid & Habibi, Daryoush & Masoum, Mohammad A.S., 2019. "Optimal allocation of distributed energy storage systems to improve performance and power quality of distribution networks," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    6. Mu, Yunfei & Wu, Jianzhong & Jenkins, Nick & Jia, Hongjie & Wang, Chengshan, 2014. "A Spatial–Temporal model for grid impact analysis of plug-in electric vehicles," Applied Energy, Elsevier, vol. 114(C), pages 456-465.
    7. Wei, Jingdong & Zhang, Yao & Wang, Jianxue & Cao, Xiaoyu & Khan, Muhammad Armoghan, 2020. "Multi-period planning of multi-energy microgrid with multi-type uncertainties using chance constrained information gap decision method," Applied Energy, Elsevier, vol. 260(C).
    8. Xie, Shiwei & Hu, Zhijian & Wang, Jueying, 2019. "Scenario-based comprehensive expansion planning model for a coupled transportation and active distribution system," Applied Energy, Elsevier, vol. 255(C).
    9. Geng, Lijun & Lu, Zhigang & He, Liangce & Zhang, Jiangfeng & Li, Xueping & Guo, Xiaoqiang, 2019. "Smart charging management system for electric vehicles in coupled transportation and power distribution systems," Energy, Elsevier, vol. 189(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ratanakuakangwan, Sudlop & Morita, Hiroshi, 2022. "Multi-aspect efficiency measurement of multi-objective energy planning model dealing with uncertainties," Applied Energy, Elsevier, vol. 313(C).
    2. Gu, Chenjia & Wang, Jianxue & Zhang, Yao & Li, Qingtao & Chen, Yang, 2022. "Optimal energy storage planning for stacked benefits in power distribution network," Renewable Energy, Elsevier, vol. 195(C), pages 366-380.
    3. Yicheng Li & Lixiong Xu & Xiangmei Lv & Yiran Xiao, 2022. "Low-Carbon Scheduling of Integrated Electricity and Gas Distribution System Considering V2G," Energies, MDPI, vol. 15(24), pages 1-18, December.
    4. Tadeusz A. Grzeszczyk & Michal K. Grzeszczyk, 2022. "Justifying Short-Term Load Forecasts Obtained with the Use of Neural Models," Energies, MDPI, vol. 15(5), pages 1-20, March.
    5. Andrade, Carlos & Selosse, Sandrine & Maïzi, Nadia, 2022. "The role of power-to-gas in the integration of variable renewables," Applied Energy, Elsevier, vol. 313(C).
    6. Stanisław Mikulski & Andrzej Tomczewski, 2021. "Use of Energy Storage to Reduce Transmission Losses in Meshed Power Distribution Networks," Energies, MDPI, vol. 14(21), pages 1-20, November.
    7. Pokpong Prakobkaew & Somporn Sirisumrannukul, 2022. "Practical Grid-Based Spatial Estimation of Number of Electric Vehicles and Public Chargers for Country-Level Planning with Utilization of GIS Data," Energies, MDPI, vol. 15(11), pages 1-19, May.
    8. Zhou, Siyu & Han, Yang & Mahmoud, Karar & Darwish, Mohamed M.F. & Lehtonen, Matti & Yang, Ping & Zalhaf, Amr S., 2023. "A novel unified planning model for distributed generation and electric vehicle charging station considering multi-uncertainties and battery degradation," Applied Energy, Elsevier, vol. 348(C).
    9. Zhuang, Wennan & Zhou, Suyang & Chen, Jinyi & Gu, Wei, 2024. "Operation optimization of electricity-steam coupled industrial energy system considering steam accumulator," Energy, Elsevier, vol. 289(C).
    10. Alexander Brem & Dominic T. J. O’Sullivan & Ken Bruton, 2021. "Advancing the Industrial Sectors Participation in Demand Response within National Electricity Grids," Energies, MDPI, vol. 14(24), pages 1-26, December.
    11. Zhou, Siyu & Han, Yang & Zalhaf, Amr S. & Lehtonen, Matti & Darwish, Mohamed M.F. & Mahmoud, Karar, 2024. "Risk-averse bi-level planning model for maximizing renewable energy hosting capacity via empowering seasonal hydrogen storage," Applied Energy, Elsevier, vol. 361(C).
    12. Mansouri, Seyed Amir & Rezaee Jordehi, Ahmad & Marzband, Mousa & Tostado-Véliz, Marcos & Jurado, Francisco & Aguado, José A., 2023. "An IoT-enabled hierarchical decentralized framework for multi-energy microgrids market management in the presence of smart prosumers using a deep learning-based forecaster," Applied Energy, Elsevier, vol. 333(C).
    13. Carlos Henrique Valério de Moraes & Jonas Lopes de Vilas Boas & Germano Lambert-Torres & Gilberto Capistrano Cunha de Andrade & Claudio Inácio de Almeida Costa, 2022. "Intelligent Power Distribution Restoration Based on a Multi-Objective Bacterial Foraging Optimization Algorithm," Energies, MDPI, vol. 15(4), pages 1-23, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Ze & Liu, Zhitao & Su, Hongye & Zhang, Liyan, 2023. "Planning of static and dynamic charging facilities for electric vehicles in electrified transportation networks," Energy, Elsevier, vol. 263(PE).
    2. Xie, Shiwei & Hu, Zhijian & Wang, Jueying & Chen, Yuwei, 2020. "The optimal planning of smart multi-energy systems incorporating transportation, natural gas and active distribution networks," Applied Energy, Elsevier, vol. 269(C).
    3. Zhou, Ze & Liu, Zhitao & Su, Hongye & Zhang, Liyan, 2022. "Integrated pricing strategy for coordinating load levels in coupled power and transportation networks," Applied Energy, Elsevier, vol. 307(C).
    4. Mousavi, Navid & Kothapalli, Ganesh & Habibi, Daryoush & Das, Choton K. & Baniasadi, Ali, 2020. "A novel photovoltaic-pumped hydro storage microgrid applicable to rural areas," Applied Energy, Elsevier, vol. 262(C).
    5. Li, Zepeng & Wu, Qiuwei & Li, Hui & Nie, Chengkai & Tan, Jin, 2024. "Distributed low-carbon economic dispatch of integrated power and transportation system," Applied Energy, Elsevier, vol. 353(PA).
    6. Chen, Yuanyi & Hu, Simon & Zheng, Yanchong & Xie, Shiwei & Hu, Qinru & Yang, Qiang, 2024. "Coordinated expansion planning of coupled power and transportation networks considering dynamic network equilibrium," Applied Energy, Elsevier, vol. 360(C).
    7. Gustavo L. Aschidamini & Gederson A. da Cruz & Mariana Resener & Maicon J. S. Ramos & Luís A. Pereira & Bibiana P. Ferraz & Sérgio Haffner & Panos M. Pardalos, 2022. "Expansion Planning of Power Distribution Systems Considering Reliability: A Comprehensive Review," Energies, MDPI, vol. 15(6), pages 1-29, March.
    8. Xie, Shiwei & Hu, Zhijian & Wang, Jueying, 2020. "Two-stage robust optimization for expansion planning of active distribution systems coupled with urban transportation networks," Applied Energy, Elsevier, vol. 261(C).
    9. Wang, Qi & Huang, Chunyi & Wang, Chengmin & Li, Kangping & Xie, Ning, 2024. "Joint optimization of bidding and pricing strategy for electric vehicle aggregator considering multi-agent interactions," Applied Energy, Elsevier, vol. 360(C).
    10. Hui Wang & Jun Wang & Zailin Piao & Xiaofang Meng & Chao Sun & Gang Yuan & Sitong Zhu, 2020. "The Optimal Allocation and Operation of an Energy Storage System with High Penetration Grid-Connected Photovoltaic Systems," Sustainability, MDPI, vol. 12(15), pages 1-22, July.
    11. Xie, Shiwei & Zheng, Jieyun & Hu, Zhijian & Wang, Jueying & Chen, Yuwei, 2020. "Urban multi-energy network optimization: An enhanced model using a two-stage bound-tightening approach," Applied Energy, Elsevier, vol. 277(C).
    12. Mohamed Mohamed Khaleel & Mohd Rafi Adzman & Samila Mat Zali, 2021. "An Integrated of Hydrogen Fuel Cell to Distribution Network System: Challenging and Opportunity for D-STATCOM," Energies, MDPI, vol. 14(21), pages 1-26, October.
    13. Ghaffari, Abolfazl & Askarzadeh, Alireza & Fadaeinedjad, Roohollah, 2022. "Optimal allocation of energy storage systems, wind turbines and photovoltaic systems in distribution network considering flicker mitigation," Applied Energy, Elsevier, vol. 319(C).
    14. Lei, Yang & Wang, Dan & Jia, Hongjie & Li, Jiaxi & Chen, Jingcheng & Li, Jingru & Yang, Zhihong, 2021. "Multi-stage stochastic planning of regional integrated energy system based on scenario tree path optimization under long-term multiple uncertainties," Applied Energy, Elsevier, vol. 300(C).
    15. Peng, Chunhua & Fan, Guozhu & Xiong, Zhisheng & Zeng, Xinzhi & Sun, Huijuan & Xu, Xuesong, 2023. "Integrated energy system planning considering renewable energy uncertainties based on multi-scenario confidence gap decision," Renewable Energy, Elsevier, vol. 216(C).
    16. Saravi, Vahid Sabzpoosh & Kalantar, Mohsen & Anvari-Moghaddam, Amjad, 2022. "Resilience-constrained expansion planning of integrated power–gas–heat distribution networks," Applied Energy, Elsevier, vol. 323(C).
    17. He, Shuaijia & Gao, Hongjun & Wang, Lingfeng & Xiang, Yingmeng & Liu, Junyong, 2020. "Distributionally robust planning for integrated energy systems incorporating electric-thermal demand response," Energy, Elsevier, vol. 213(C).
    18. Li, Yaohong & Tian, Ran & Wei, Mingshan, 2022. "Operation strategy for interactive CCHP system based on energy complementary characteristics of diverse operation strategies," Applied Energy, Elsevier, vol. 310(C).
    19. Badr Eddine Lebrouhi & Éric Schall & Bilal Lamrani & Yassine Chaibi & Tarik Kousksou, 2022. "Energy Transition in France," Post-Print hal-03716839, HAL.
    20. Diaz-Cachinero, Pablo & Muñoz-Hernandez, Jose Ignacio & Contreras, Javier, 2021. "Integrated operational planning model, considering optimal delivery routing, incentives and electric vehicle aggregated demand management," Applied Energy, Elsevier, vol. 304(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:301:y:2021:i:c:s0306261921008370. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.