IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v290y2021ics0306261921002683.html
   My bibliography  Save this article

Two-stage robust stochastic scheduling for energy recovery in coal mine integrated energy system

Author

Listed:
  • Huang, Hongxu
  • Liang, Rui
  • Lv, Chaoxian
  • Lu, Mengtian
  • Gong, Dunwei
  • Yin, Shulin

Abstract

During the mining process, many energy resources are produced additionally, which have a promising prospect to supply electricity, heat and cooling energy. However, different energy inertia and diverse uncertainties from photovoltaic, wind turbine and gushing water outputs will pose challenges to the operation of a coal mine integrated energy system. This paper constructs a coal mine integrated energy system operation model considering energy resources recovery. Coal mine integrated energy system consists of energy supply subsystem, energy recovery subsystem, and energy storage subsystem, and it integrates multiple energies such as electricity, heat and cooling. A two-stage robust stochastic optimization method is proposed to adapt to the uncertainties. At the day-ahead stage decision, the optimal operation problem is solved at long time intervals to determine the heat dispatching. Meanwhile, the intra-day stage decision is focused on dealing with diverse uncertainties at short time intervals to enhance operational robustness. Heat energy equipment is scheduled at intra-day stage with the day-ahead dispatching result. A real case of coal mine is demonstrated to validate the effectiveness and robustness of the proposed method. The result reveals that the proposed method, compared to the conventional methods, can fully improve the economic benefits, the energy recovery and the system operational robustness.

Suggested Citation

  • Huang, Hongxu & Liang, Rui & Lv, Chaoxian & Lu, Mengtian & Gong, Dunwei & Yin, Shulin, 2021. "Two-stage robust stochastic scheduling for energy recovery in coal mine integrated energy system," Applied Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:appene:v:290:y:2021:i:c:s0306261921002683
    DOI: 10.1016/j.apenergy.2021.116759
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921002683
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.116759?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhi Chen & Melvyn Sim & Peng Xiong, 2020. "Robust Stochastic Optimization Made Easy with RSOME," Management Science, INFORMS, vol. 66(8), pages 3329-3339, August.
    2. Ghoreishi-Madiseh, Seyed Ali & Kalantari, Hosein & Kuyuk, Ali Fahrettin & Sasmito, Agus P., 2019. "A new model to analyze performance of mine exhaust heat recovery systems with coupled heat exchangers," Applied Energy, Elsevier, vol. 256(C).
    3. Bramstoft, Rasmus & Pizarro-Alonso, Amalia & Jensen, Ida Græsted & Ravn, Hans & Münster, Marie, 2020. "Modelling of renewable gas and renewable liquid fuels in future integrated energy systems," Applied Energy, Elsevier, vol. 268(C).
    4. Li, Guoqing & Zhang, Rufeng & Jiang, Tao & Chen, Houhe & Bai, Linquan & Cui, Hantao & Li, Xiaojing, 2017. "Optimal dispatch strategy for integrated energy systems with CCHP and wind power," Applied Energy, Elsevier, vol. 192(C), pages 408-419.
    5. Li, Zhengmao & Xu, Yan, 2019. "Temporally-coordinated optimal operation of a multi-energy microgrid under diverse uncertainties," Applied Energy, Elsevier, vol. 240(C), pages 719-729.
    6. Musa, S. Danlami & Zhonghua, Tang & Ibrahim, Abdullateef O. & Habib, Mukhtar, 2018. "China's energy status: A critical look at fossils and renewable options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2281-2290.
    7. Pan, Zhaoguang & Guo, Qinglai & Sun, Hongbin, 2016. "Interactions of district electricity and heating systems considering time-scale characteristics based on quasi-steady multi-energy flow," Applied Energy, Elsevier, vol. 167(C), pages 230-243.
    8. Das, Barun K. & Al-Abdeli, Yasir M. & Kothapalli, Ganesh, 2018. "Effect of load following strategies, hardware, and thermal load distribution on stand-alone hybrid CCHP systems," Applied Energy, Elsevier, vol. 220(C), pages 735-753.
    9. Jiang, Yibo & Xu, Jian & Sun, Yuanzhang & Wei, Congying & Wang, Jing & Liao, Siyang & Ke, Deping & Li, Xiong & Yang, Jun & Peng, Xiaotao, 2018. "Coordinated operation of gas-electricity integrated distribution system with multi-CCHP and distributed renewable energy sources," Applied Energy, Elsevier, vol. 211(C), pages 237-248.
    10. Moretti, Luca & Martelli, Emanuele & Manzolini, Giampaolo, 2020. "An efficient robust optimization model for the unit commitment and dispatch of multi-energy systems and microgrids," Applied Energy, Elsevier, vol. 261(C).
    11. Zhao, Shifei & Ge, Zhihua & He, Jie & Wang, Chunlan & Yang, Yongping & Li, Peifeng, 2017. "A novel mechanism for exhaust steam waste heat recovery in combined heat and power unit," Applied Energy, Elsevier, vol. 204(C), pages 596-606.
    12. Sharma, Pooja & Kolhe, Mohan & Sharma, Arvind, 2020. "Economic performance assessment of building integrated photovoltaic system with battery energy storage under grid constraints," Renewable Energy, Elsevier, vol. 145(C), pages 1901-1909.
    13. Yan, Yi & Zhang, Chenghui & Li, Ke & Wang, Zhen, 2018. "An integrated design for hybrid combined cooling, heating and power system with compressed air energy storage," Applied Energy, Elsevier, vol. 210(C), pages 1151-1166.
    14. Al-Habaibeh, Amin & Athresh, Anup P. & Parker, Keith, 2018. "Performance analysis of using mine water from an abandoned coal mine for heating of buildings using an open loop based single shaft GSHP system," Applied Energy, Elsevier, vol. 211(C), pages 393-402.
    15. Wang, Dan & Zhi, Yun-qiang & Jia, Hong-jie & Hou, Kai & Zhang, Shen-xi & Du, Wei & Wang, Xu-dong & Fan, Meng-hua, 2019. "Optimal scheduling strategy of district integrated heat and power system with wind power and multiple energy stations considering thermal inertia of buildings under different heating regulation modes," Applied Energy, Elsevier, vol. 240(C), pages 341-358.
    16. Wang, Jiangjiang & Xie, Xinqi & Lu, Yanchao & Liu, Boxiang & Li, Xiaojing, 2018. "Thermodynamic performance analysis and comparison of a combined cooling heating and power system integrated with two types of thermal energy storage," Applied Energy, Elsevier, vol. 219(C), pages 114-122.
    17. Qin, Xin & Sun, Hongbin & Shen, Xinwei & Guo, Ye & Guo, Qinglai & Xia, Tian, 2019. "A generalized quasi-dynamic model for electric-heat coupling integrated energy system with distributed energy resources," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    18. Fan, Jinyang & Xie, Heping & Chen, Jie & Jiang, Deyi & Li, Cunbao & Ngaha Tiedeu, William & Ambre, Julien, 2020. "Preliminary feasibility analysis of a hybrid pumped-hydro energy storage system using abandoned coal mine goafs," Applied Energy, Elsevier, vol. 258(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Xing & Zhang, Chenghui & Sun, Bo, 2022. "Optimization strategy based on robust model predictive control for RES-CCHP system under multiple uncertainties," Applied Energy, Elsevier, vol. 325(C).
    2. Wang, Yan & Hu, Hejuan & Sun, Xiaoyan & Zhang, Yong & Gong, Dunwei, 2022. "Unified operation optimization model of integrated coal mine energy systems and its solutions based on autonomous intelligence," Applied Energy, Elsevier, vol. 328(C).
    3. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Zhang, Yi & Zhao, Zhipeng & Lu, Jia, 2022. "Wasserstein metric-based two-stage distributionally robust optimization model for optimal daily peak shaving dispatch of cascade hydroplants under renewable energy uncertainties," Energy, Elsevier, vol. 260(C).
    4. Qiu, Haifeng & Gu, Wei & Liu, Pengxiang & Sun, Qirun & Wu, Zhi & Lu, Xi, 2022. "Application of two-stage robust optimization theory in power system scheduling under uncertainties: A review and perspective," Energy, Elsevier, vol. 251(C).
    5. Huang, Hongxu & Li, Zhengmao & Beng Gooi, Hoay & Qiu, Haifeng & Zhang, Xiaotong & Lv, Chaoxian & Liang, Rui & Gong, Dunwei, 2023. "Distributionally robust energy-transportation coordination in coal mine integrated energy systems," Applied Energy, Elsevier, vol. 333(C).
    6. Shi, Yueyue & Liu, Yongqi & Zhou, Yuqi & Shi, Junrui & Qi, Xiaoni & Mao, Mingming, 2023. "Study in mitigation of lean methane and stable heat recovery via embedded heat exchanger tubes in the regenerative monolith bed," Renewable Energy, Elsevier, vol. 218(C).
    7. Fan, Guozhu & Peng, Chunhua & Wang, Xuekui & Wu, Peng & Yang, Yifan & Sun, Huijuan, 2024. "Optimal scheduling of integrated energy system considering renewable energy uncertainties based on distributionally robust adaptive MPC," Renewable Energy, Elsevier, vol. 226(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Lei & Hwang, Yunho & Cao, Tao, 2019. "An overview of optimization technologies applied in combined cooling, heating and power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    2. Zhang, Lizhi & Kuang, Jiyuan & Sun, Bo & Li, Fan & Zhang, Chenghui, 2020. "A two-stage operation optimization method of integrated energy systems with demand response and energy storage," Energy, Elsevier, vol. 208(C).
    3. Li, Fan & Sun, Bo & Zhang, Chenghui & Liu, Che, 2019. "A hybrid optimization-based scheduling strategy for combined cooling, heating, and power system with thermal energy storage," Energy, Elsevier, vol. 188(C).
    4. Kong, Xiangyu & Sun, Fangyuan & Huo, Xianxu & Li, Xue & Shen, Yu, 2020. "Hierarchical optimal scheduling method of heat-electricity integrated energy system based on Power Internet of Things," Energy, Elsevier, vol. 210(C).
    5. Jiajia Li & Jinfu Liu & Peigang Yan & Xingshuo Li & Guowen Zhou & Daren Yu, 2021. "Operation Optimization of Integrated Energy System under a Renewable Energy Dominated Future Scene Considering Both Independence and Benefit: A Review," Energies, MDPI, vol. 14(4), pages 1-36, February.
    6. Qiao, Zheng & Guo, Qinglai & Sun, Hongbin & Sheng, Tongtian, 2018. "Multi-time period optimized configuration and scheduling of gas storage in gas-fired power plants," Applied Energy, Elsevier, vol. 226(C), pages 924-934.
    7. Liu, Liu & Wang, Dan & Hou, Kai & Jia, Hong-jie & Li, Si-yuan, 2020. "Region model and application of regional integrated energy system security analysis," Applied Energy, Elsevier, vol. 260(C).
    8. Zhang, Tao & Li, Guojun & Wei, Linyang & Ji, Wenchao & Qiu, Yong & Zhang, Qinrui, 2024. "A novel dynamic simulation strategy for regional integrated energy system considering coupling components failure," Energy, Elsevier, vol. 295(C).
    9. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Pan, Bo & Qi, Shiqiang, 2020. "Two-stage stochastic optimal operation of integrated electricity and heat system considering reserve of flexible devices and spatial-temporal correlation of wind power," Applied Energy, Elsevier, vol. 275(C).
    10. Mao, Anjia & Yu, Tiantian & Ding, Zhaohao & Fang, Sidun & Guo, Jinran & Sheng, Qianqian, 2022. "Optimal scheduling for seaport integrated energy system considering flexible berth allocation," Applied Energy, Elsevier, vol. 308(C).
    11. Zhang, Suhan & Gu, Wei & Lu, Hai & Qiu, Haifeng & Lu, Shuai & Wang, Dada & Liang, Junyu & Li, Wenyun, 2021. "Superposition-principle based decoupling method for energy flow calculation in district heating networks," Applied Energy, Elsevier, vol. 295(C).
    12. Yuan, Yu & Bai, Zhang & Zhou, Shengdong & Zheng, Bo & Hu, Wenxin, 2022. "Potential of applying the thermochemical recuperation in combined cooling, heating and power generation: Flexible demand response characteristics," Applied Energy, Elsevier, vol. 325(C).
    13. Zhang, Suhan & Gu, Wei & Qiu, Haifeng & Yao, Shuai & Pan, Guangsheng & Chen, Xiaogang, 2021. "State estimation models of district heating networks for integrated energy system considering incomplete measurements," Applied Energy, Elsevier, vol. 282(PA).
    14. Gibb, Duncan & Johnson, Maike & Romaní, Joaquim & Gasia, Jaume & Cabeza, Luisa F. & Seitz, Antje, 2018. "Process integration of thermal energy storage systems – Evaluation methodology and case studies," Applied Energy, Elsevier, vol. 230(C), pages 750-760.
    15. Wang, L.X. & Zheng, J.H. & Li, M.S. & Lin, X. & Jing, Z.X. & Wu, P.Z. & Wu, Q.H. & Zhou, X.X., 2019. "Multi-time scale dynamic analysis of integrated energy systems: An individual-based model," Applied Energy, Elsevier, vol. 237(C), pages 848-861.
    16. Wang, Jiangjiang & Lu, Zherui & Li, Meng & Lior, Noam & Li, Weihua, 2019. "Energy, exergy, exergoeconomic and environmental (4E) analysis of a distributed generation solar-assisted CCHP (combined cooling, heating and power) gas turbine system," Energy, Elsevier, vol. 175(C), pages 1246-1258.
    17. Bao, Zhejing & Chen, Dawei & Wu, Lei & Guo, Xiaogang, 2019. "Optimal inter- and intra-hour scheduling of islanded integrated-energy system considering linepack of gas pipelines," Energy, Elsevier, vol. 171(C), pages 326-340.
    18. Wang, Yuwei & Yang, Yuanjuan & Fei, Haoran & Song, Minghao & Jia, Mengyao, 2022. "Wasserstein and multivariate linear affine based distributionally robust optimization for CCHP-P2G scheduling considering multiple uncertainties," Applied Energy, Elsevier, vol. 306(PA).
    19. Zheng, Lingwei & Zhou, Xingqiu & Qiu, Qi & Yang, Lan, 2020. "Day-ahead optimal dispatch of an integrated energy system considering time-frequency characteristics of renewable energy source output," Energy, Elsevier, vol. 209(C).
    20. Kalantari, Hosein & Ali Ghoreishi-Madiseh, Seyed, 2023. "Study of mine exhaust heat recovery with fully-coupled direct capture and indirect delivery systems," Applied Energy, Elsevier, vol. 334(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:290:y:2021:i:c:s0306261921002683. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.